Эконовости О компании Издания и
проекты
Авторам Реклама Подписка Контакты Архив Полезные
ссылки
       
 
№2, 2023: Раздел 4. Экологическая безопасность строительства и городского  хозяйства

<< Содержание номера
<< Архив


[RUS] / [ENG]
Раздел 4. Экологическая безопасность строительства и городского  хозяйства
Ле Минь Туан, Н.В. Бакаева Взаимосвязь между городским островом тепла и городским островом загрязнения: аналитический обзор и методы исследований
Стр.72-83
https://www.doi.org/10.24412/1816-1863-2023-2-72-83


Ле Минь Туан, канд. техн. наук,  кафедра «Градостроительство», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ),
[email protected], г Москва, Россия
Н.В. Бакаева, д-р техн. наук, профессор,  кафедра «Градостроительство», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
[email protected] , г Москва, Россия

      Быстрая урбанизация и рост населения приводят к возникновению городских тепловых островов (ГОТ) и островов загрязнения (ГОЗ). Эти явления связаны с процессами сгорания топлива на транспорте, на объектах  промышленности и с рядом других антропогенных процессов, а также с изменениями в передаче тепла и движении между поверхностью Земли и атмосферой. Обзор научной литературы за последние 30 лет посвящен в основном влиянию городского острова тепла (ГОТ) и планетарного потепления, которые вызываются урбанизацией. Исследования взаимосвязи ГОТ и ГОЗ в научной литературе пока носят постановочный характер. Основным методом исследования явился теоретический анализ и обобщение научной литературы. Также для исследования связи между городским островом тепла и городским островом загрязнения были использованы библиографические и реферативные базы данных рецензируемой научной литературы (ScienceDirect, Scopus, Google Scholar, PubMed, Web of Science, elibrary), используя набор ключевых слов, связанных с городской средой и качеством воздуха. Организованные поисковые работы были проведены для выявления статей, соответствующих заданным критериям. Аналитический обзор выполненных к настоящему времени исследований позволил установить, что развитие ГОТ и эпизоды сильного загрязнения атмосферы вероятны в синоптических условиях, характеризующихся высокими температурами, низкой влажностью, малой скоростью ветра и безоблачностью. Городской ветер с малой инверсией и конвергенцией усугубляет локальный перегрев и качество воздуха, особенно в ночное время. Воздействие усиленной турбулентности в пограничном слое города имеет решающее значение для определения взаимосвязи между ГОТ и ГОЗ. Используя технологию анализа изображений дистанционного зондирования, поддерживаемую платформой Google Earth Engine, были определены местоположения районов с городскими островами тепла и островами городского загрязнения в г. Москве: в северных и центральных районах города, с уменьшением неблагоприятных факторов к юго-западу. Исследования показывают, что городские параметры связана с эффектами городского температурного острова и городского острова загрязнения. На основе проанализированной географической информации в сочетании с облачными вычислениями возможна долгосрочная оценка и анализ микроклимата города.
              Rapid urbanization and population growth are giving rise to urban heat islands (UHIs) and pollution islands (UPIs). These phenomena are associated with the processes of fuel combustion in transport, at industrial facilities and with a number of other anthropogenic processes, as well as with changes in heat transfer and movement between the Earth's surface and the atmosphere. A review of the scientific literature over the past 30 years focuses mainly on the impact of urban heat island (UHI) and planetary warming, which are caused by urbanization. Studies of the relationship between UHI and UPI in the scientific literature are still staging. The theoretical analysis and generalization of scientific literature were used to study the relationship between UHI and UPI. For this, large databases (ScienceDirect, Scopus, Google Scholar, PubMed, Web of Science, elibrary) were used, using a set of keywords related to the urban environment and air quality. Organized searches were conducted to identify articles that met the given criteria, and analysis was carried out on these selected articles. An analytical review of the studies performed to date has made it possible to establish that the development of GOT and episodes of severe atmospheric pollution are likely under synoptic conditions characterized by high temperatures, low humidity, low wind speed and cloudlessness. Urban wind with low inversion and convergence exacerbates localized overheating and air quality, especially at night. The impact of increased turbulence in the urban boundary layer is critical to determining the relationship between the UHI and the UPI. Using the remote sensing image analysis technology supported by the Google Earth Engine platform, the locations of areas with urban heat islands and urban pollution islands in Moscow were determined: in the northern and central regions of the city, with a decrease in adverse factors to the southwest. Studies show that urban parameters are related to the effects of urban temperature island and urban pollution island. Based on the analyzed geographic information, combined with cloud computing, a long-term assessment and analysis of the microclimate of the city is possible.
Ключевые слова: городской остров тепла (ГОТ), городской остров загрязнения (ГОЗ), озеленение, тепловой комфорт, городская тепловая среда
Keywords: urban heat island (UHI), urban pollution island (UPI), landscape, thermal comfort, urban thermal environment

Библиографический список
1. M. L. Imhoff, P. Zhang, R. E. Wolfe, and L. Bounoua, “Remote sensing of the urban heat island effect across biomes in the continental USA,” Remote Sens Environ, vol. 114, no. 3, pp. 504–513, Mar. 2010, doi: 10.1016/j.rse.2009.10.008.
2. P. J. Crutzen, “New Directions: The growing urban heat and pollution ‘island’ effect - Impact on chemistry and climate,” Atmospheric Environment, vol. 38, no. 21. Elsevier Ltd, pp. 3539–3540, 2004. doi: 10.1016/j.atmosenv.2004.03.032.
3. I. S. M. Elsayed, “Mitigation of the urban heat island of the city of Kuala Lumpur, Malaysia,” Middle East J Sci Res, vol. 11, no. 11, pp. 1602–1613, 2012, doi: 10.5829/idosi.mejsr.2012.11.11.1590.
4. C. Sarrat, A. Lemonsu, V. Masson, and D. Guedalia, “Impact of urban heat island on regional atmospheric pollution,” Atmos Environ, vol. 40, no. 10, pp. 1743–1758, Mar. 2006, doi: 10.1016/j.atmosenv.2005.11.037.
5. A. H. Rosenfeld, H. Akbari, J. J. Romm ’tv, and M. Pomerantz, “Cool communities: strategies for heat island mitigation and smog reduction ’,” 1998.
6. O. Raaschou-Nielsen et al., “Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE),” Lancet Oncol, vol. 14, no. 9, pp. 813–822, Aug. 2013, doi: 10.1016/S1470-2045(13)70279-1.
7. P. Melstrom et al., “Measuring PM2.5, ultrafine particles, nicotine air and wipe samples following the use of electronic cigarettes,” Nicotine and Tobacco Research, vol. 19, no. 9, pp. 1055–1061, Sep. 2017, doi: 10.1093/ntr/ntx058.
8. R. L. Wilby, “Constructing climate change scenarios of urban heat island intensity and air quality,” Environ Plann B Plann Des, vol. 35, no. 5, pp. 902–919, 2008, doi: 10.1068/b33066t.
9. R. Emmanuel, “Thermal comfort implications of urbanization in a warm-humid city: The Colombo Metropolitan Region (CMR), Sri Lanka,” Build Environ, vol. 40, no. 12, pp. 1591–1601, Dec. 2005, doi: 10.1016/j.buildenv.2004.12.004.
10. Y. Wang et al., “The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai,” Atmos Environ, vol. 40, no. 16, pp. 2935–2952, May 2006, doi: 10.1016/j.atmosenv.2005.12.051.
11. Y. Lin, J. Zou, W. Yang, and C. Q. Li, “A review of recent advances in research on PM2.5 in China,” International Journal of Environmental Research and Public Health, vol. 15, no. 3. MDPI, Mar. 02, 2018. doi: 10.3390/ijerph15030438.
12. J. Wu, C. Fu, Y. Xu, J. P. Tang, W. Wang, and Z. Wang, “Simulation of direct effects of black carbon aerosol on temperature and hydrological cycle in Asia by a Regional Climate Model,” Meteorology and Atmospheric Physics, vol. 100, no. 1–4, pp. 179–193, 2008, doi: 10.1007/s00703-008-0302-y.
13. B. L. Zhuang et al., “Optical properties and radiative forcing of urban aerosols in Nanjing, China,” Atmos Environ, vol. 83, pp. 43–52, 2014, doi: 10.1016/j.atmosenv.2013.10.052.
14. X. Tie et al., “Severe Pollution in China Amplified by Atmospheric Moisture,” Sci Rep, vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-15909-1.
15. Q. Liu et al., “New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events,” Sci Rep, vol. 8, no. 1, Dec. 2018, doi: 10.1038/s41598-018-24366-3.
16. C. Ruckstuhl, R. Philipona, J. Morland, and A. Ohmura, “Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes,” Journal of Geophysical Research Atmospheres, vol. 112, no. 3, Feb. 2007, doi: 10.1029/2006JD007850.
17. C. Cao et al., “Urban heat islands in China enhanced by haze pollution,” Nat Commun, vol. 7, Aug. 2016, doi: 10.1038/ncomms12509.
18. C. A. Cardelino and W. L. Chameides, “NATURAL HYDROCARBONS, URBANIZATION, AND URBAN OZONE,” 1990.
19. M. S. Jin, W. Kessomkiat, and G. Pereira, “Satellite-observed urbanization characters in Shanghai, China: Aerosols, urban heat Island effect, and land-atmosphere interactions,” Remote Sens (Basel), vol. 3, no. 1, pp. 83–99, Jan. 2011, doi: 10.3390/rs3010083.
20. P. Jonsson, C. Bennet, I. Eliasson, and E. Selin Lindgren, “Suspended particulate matter and its relations to the urban climate in Dar es Salaam, Tanzania,” Atmos Environ, vol. 38, no. 25, pp. 4175–4181, Aug. 2004, doi: 10.1016/j.atmosenv.2004.04.021.
21. D. Zhou, S. Zhao, S. Liu, L. Zhang, and C. Zhu, “Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers,” Remote Sens Environ, vol. 152, pp. 51–61, 2014, doi: 10.1016/j.rse.2014.05.017.
22. H. Li et al., “Interaction between urban heat island and urban pollution island during summer in Berlin,” Science of the Total Environment, vol. 636, pp. 818–828, Sep. 2018, doi: 10.1016/j.scitotenv.2018.04.254.
23. B. Feizizadeh and T. Blaschke, “Examining Urban heat Island relations to land use and air pollution: Multiple endmember spectral mixture analysis for thermal remote sensing,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 6, no. 3, pp. 1749–1756, 2013, doi: 10.1109/JSTARS.2013.2263425.
24. E. L. Krüger, F. O. Minella, and F. Rasia, “Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil,” Build Environ, vol. 46, no. 3, pp. 621–634, Mar. 2011, doi: 10.1016/j.buildenv.2010.09.006.
25. N. Elansky, “Air quality and CO emissions in the Moscow megacity,” Urban Clim, vol. 8, pp. 42–56, 2014, doi: 10.1016/j.uclim.2014.01.007.
26. N. F. Elanskii et al., “Observations of the atmosphere composition in the Moscow megapolis from a mobile laboratory,” Doklady Earth Sciences, vol. 432, no. 1, pp. 649–655, May 2010, doi: 10.1134/S1028334X10050211.
27. E. Y. Bezuglaya, A. B. Shchutskaya, and I. V Smirnova, “air pollution index and interpretation of measurements of toxic pollutant concentrations,” 1993.
28. M. V. Gribok, “Features of media coverage of air pollution problems in Russian cities,” in InterCarto, InterGIS, Lomonosov Moscow State University, 2020, pp. 94–104. doi: 10.35595/2414-9179-2020-1-26-94-104.
29. M. A. Wulder et al., “The global Landsat archive: Status, consolidation, and direction,” Remote Sens Environ, vol. 185, pp. 271–283, 2016, doi: 10.1016/j.rse.2015.11.032.
30. D. P. Roy et al., “Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States,” Remote Sens Environ, vol. 114, no. 1, pp. 35–49, 2010, doi: 10.1016/j.rse.2009.08.011.
31. Jeffrey Masek et al., “Chapter 62 High-energy spectorscopy of lanthanide materials - an overview,” IEEE geosience and remote sensing letters, vol. 3, no. 1, pp. 68–72, 2006, doi: 10.1016/S0168-1273(87)10004-9.
32. F. Chang et al., “BigTable: A distributed storage system for structured data,” OSDI 2006 - 7th USENIX Symposium on Operating Systems Design and Implementation, pp. 205–218, 2006.
33. J. C. Corbett et al., “Spanner,” ACM Transactions on Computer Systems, vol. 31, no. 3, pp. 1–22, 2013, doi: 10.1145/2491245.
34. A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale cluster management at Google with Borg,” Proceedings of the 10th European Conference on Computer Systems, EuroSys 2015, 2015, doi: 10.1145/2741948.2741964.
35. I. S. SHUKUROV, M. T. LE, L. Il. SHUKUROVA, and A. D. DMITRIEVA, “Influence of the Effect of the Urban Heat Island on the Cities Sustainable Development,” Urban construction and architecture, vol. 10, no. 2, pp. 62–70, 2020, doi: 10.17673/vestnik.2020.02.9.
36. N. Bakaeva and M. T. Le, “Determination of urban pollution islands by using remote sensing technology in Moscow, Russia,” Ecol Inform, vol. 67, p. 101493, Mar. 2022, doi: 10.1016/j.ecoinf.2021.101493.

RELATIONSHIP BETWEEN URBAN HEAT ISLAND AND URBAN POLLUTION ISLAND: ANALYTICAL REVIEW AND RESEARCH METHODS
Le Minh Tuan, PhD (Technical Sciences), Urban planning department,
National Research Moscow State University of Civil Engineering,
[email protected] Moscow, Russia
N.V. Bakaeva, Ph.d (Technical Sciences), Dr. Habil, professor, Urban planning department, National Research Moscow State University of Civil Engineering,
[email protected], Moscow, Russia


Прикреплённые файлы:




<< Содержание номера
<< Архив

Дата последнего обновления: 18:58:40/24.02.24
   
     
       
 
ИАА "Информ-Экология"


   
     
 
       
 
Министерство природных ресурсов Российской Федерации


   
     
 
       
 
Счётчик


   
     
 
© Designed&Powered by 77mo.ru. 2007. All rights Reserved.