Эконовости О компании Издания и
проекты
Авторам Реклама Подписка Контакты Архив Полезные
ссылки
       
 
№4, 2024: Теоретические проблемы экологии

<< Содержание номера
<< Архив


[RUS] / [ENG]
Теоретические проблемы экологии
Источники кадмия, анализ пределов содержания, стратегии снижения в окружающей среде (обзор
Д. В. Петухов, к. х. н., доцент,
Е. В. Товстик, к. б. н., с. н. с., доцент,
Вятский государственный университет,
610000, Россия, г. Киров, ул. Московская, д. 36 D. V. Petukhov ORCID: 0000-0002-7733-5250,
E. V. Tovstik ORCID: 0000-0003-1861-6076,
Vyatka State University,
36, Moskovskaya St., Kirov, Russia, 610000
e-mail
[email protected]



Аннотация
В работе проанализированы основные источники кадмия в окружающей среде и пути его миграции. Показано, что кадмий является одним из приоритетных загрязнителей воздуха и почвы в промышленных регионах. Попадая в организм человека, он блокирует функции ферментов и может вызывать серьёзные заболевания. В связи с высокой опасностью содержание кадмия нормируется в почве (от 0,5 до 2,0 мг/кг), удобрениях (3 и 20 мг/кг P2O5), продуктах питания (0,02–1,0 мг/кг), продовольственном зерне (0,1 мг/кг), комбикормах для сельскохозяйственных животных (0,3–0,4 мг/кг). Противодействием попадания кадмия в пищевые цепи является фиторемедиация. В качестве гипераккумуляторов кадмия используют лантану сводчатую, горчицу сарептскую, рапс, клещевину, табак. Для повышения фиторемедиационной эффективности растений-гипераккумуляторов проводят их трансформацию фитохелатиновыми генами, кодирующими синтез металлсвязывающих пептидов; подкисляют почвы; используют штаммы эндофитных бактерий и органические добавки. Значительно уменьшить воздействие кадмия на организм человека позволяют агрономические методы, регулирующие поглощение ионов токсичного металла сельскохозяйственными культурами. Среди них повышение устойчивости растений к кадмиевому стрессу и снижение уровня накопления токсичного металла в них.

Abstract
The paper systematizes information on anthropogenic environmental pollution by cadmium, pathways of Cd distribution, toxicity, and strategies to reduce Cd content in soil and crop products. The relevance stems from the need to develop strategies to prevent long-term exposure to cadmium in the human body, which has significant consequences for public health and environmental safety. The paper analyzes in detail the sources and migration pathways of cadmium in the environment. It is shown that cadmium is one of the main air and soil pollutants in industrial regions. Its presence in the environment is aggravated by natural phenomena. Cadmium compounds are capable of traveling long distances with air currents, resulting in deposition in areas remote from pollution sources. Special attention is paid to the mechanisms of cadmium accumulation in the soil and its subsequent transfer to plants, which leads to its penetration into the food chain. Cd is non-essential element for plants. Cadmium has carcinogenic properties. Once in the human body, it blocks enzyme functions and can provoke serious diseases. Due to the high danger, cadmium content is normalized in soil (from 0.5 to 2.0 mg/kg), fertilizers (3 and 20 mg/kg P2O5), food (0.02–1.0 mg/kg), food grains (0.1 mg/kg), animal feed (0.3–0.4 mg/kg). Phytoremediation is an effective way to reduce the ingress of cadmium into the food chain. Lantana camara L., Brassica juncea (L.) Czern., Brassica napus L., Nicotiana tabacum L., castor oil are used as cadmium hyperaccumulators. Soil acidification, inoculation with endophytic bacterial strains, chelating organic additives, and transformation of hyperaccumulator plants with phytochelatin genes encoding the synthesis of metal-binding peptides have been used to enhance phytoremediation efficiency. Agronomic methods that regulate the absorption of toxic metal by agricultural crops can significantly reduce the effects of cadmium in the human body. Increasing the resistance of plants to cadmium stress and reducing the accumulation of toxic metal in them are among them.

Ключевые слова
кадмий, миграция, предельно допустимая концентрация, почва, зерно, ремедиация
Keywords
cadmium, migration, maximum permissible concentration, soil, grain, remediation



References
1. Maddela N.R., Kakarla D., García L.Z., Chakraborty S., Venkateswarlu K., Megharaj M. Cocoa-laden cadmium threatens human health and cacao economy: A critical view // Sci. Total Environ. 2020. V. 720. Article No. 137645. doi: 10.1016/j.scitotenv.2020.137645
2. Satarug S., Vesey D.A., Gobe G.C., Phelps K.R. Estimation of health risks associated with dietary cadmium exposure // Arch. Toxicol. 2023. V. 97. No. 2. P. 329–358. doi: 10.1007/s00204-022-03432-w
3. State Report “On the state and environmental protection of the Russian Federation in 2022” [Internet resource] https://2022.ecology-gosdoklad.ru/ (Accessed: 11.06.2024)
4. Elinder C.G. Cadmium: uses, occurrence, and intake // Cadmium and Health: A toxicological and epidemiological appraisal / Eds. L.T. Friberg, C.G. Elinder, T. Kjellstrom, G.F. Nordberg. V. 1. CRC Press, 1986. P. 23–64. doi: 10.1201/9780429260605
5. Ober J.A. Mineral commodity summaries 2016. US Geological Survey, 2016. 202 p. doi: 10.3133/70170140
6. Vilk M.F., Aksenov V.A., Yudaeva O.S., Prostomolotova V.B., Ovanesova E.A. Technical and operational methods to ensure environmental and toxicological safety of traction motors of railway rolling stock // Security Problems of the Russian Society. 2017. V. 4. P. 96–107 (in Russian).
7. Vinogradova А.А. Lead and cadmium fluxes from atmosphere onto the surface in European Russia – from EMEP data // International Journal of Applied and Fundamental Research. 2015. No. 12. P. 111–115 (in Russian).
8. Kozub S.N. Analysis of current state and choice of raw material of secondary cadmium technology // Technology Audit and Production Reserves. 2015. V. 1. No. 4. P. 37–41 (in Russian). doi: 10.15587/2312-8372.2015.38113
9. Tuhtamisheva D.Yu., Hesenov A.U., Rashidova N.T. Modern ways to protect metal from corrosion // Educational Research in Universal Sciences. 2024. V. 3. Special No. 2. P. 641–644 (in Russian).
10. Pelyasova D.A., Lwin Ko Ko, Kvasnikov M.Yu. Pigmented cadmium-polymer coatings // Uspekhi v himii i himicheskoy tekhnologii. 2018. V. 32. No. 6. P. 138–140 (in Russian).
11. Akhmetzyanov B.N., Vasilieva A.V., Getman A.A. The use of cadmium-based alloys // Metallurgiya mashinostroeniya. 2020. No. 4. P. 32–33 (in Russian).
12. Turner A. Cadmium pigments in consumer products and their health risks // Sci. Total Environ. 2019. V. 657. P. 1409–1418. doi: 10.1016/j.scitotenv.2018.12.096
13. Bortnikov N.S., Volkov A.V., Galyamov A.L., Vikent'ev I.V., Aristov V.V., Lalomov A.V., Murashov K.Yu. Mineral resources of high-tech metals in Russia: state of the art and outlook // Geol. Ore Deposits. 2016. V. 58. No. 2. P. 83–103. doi: 10.1134/S1075701516020021
14. Brunner P.H., Rechberger H. Waste to energy – key element for sustainable waste management // Waste Manag. 2015. V. 37. P. 3–12. doi: 10.1016/j.wasman.2014.02.003
15. Yuan Z., Luo T., Liu X., Hua H., Zhuang Yu., Zhang X., Zhang L., Zhang Y., Xu W., Ren J. Tracing anthropogenic cadmium emissions: From sources to pollution // Sci. Total Environ. 2019. V. 676. P. 87–96. doi: 10.1016/j.scitotenv.2019.04.250
16. Golovatyi S.Е., Savchenko S.V., Samusik Е.А. Cadmium, zinc and lead in soils in the zone of influence of the industrial enterprises // J. Belarus. State Univ. Ecol. 2017. No. 4. P. 70–80 (in Russian).
17. Nduka J.K., Kelle H.I., Amuka J.O. Health risk assessment of cadmium, chromium and nickel from car paint dust from used automobiles at auto-panel workshops in Nigeria // Toxicol. Rep. 2019. V. 6. P. 449–456. doi: 10.1016/j.toxrep.2019.05.007
18. Es'kov E.K., Es'kova M.D. Accumulation of lead and cadmium by different plant organs depending on their distance from the highway // Agrochemistry. 2013. No. 5. P. 81–85 (in Russian).
19. Elehinafe F.B., Mamudu A.O., Okedere O.B., Ibitioye A. Risk assessment of chromium and cadmium emissions from the consumption of premium motor spirit (PMS) and automotive gas oil (AGO) in Nigeria // Heliyon. 2020. V. 6. No. 11. Article No. e05301. doi: 10.1016/j.heliyon.2020.e05301
20. Kakareka S.V., Salivonchik S.V. Forecasting heavy metal pollution of soils in an administrative district of Belarus // Geografiya i prirodnye resursy. 2017. No. 3. P. 179–188 (in Russian). doi: 10.21782/GIPR0206-1619-2017-3(179-188)
21. Chetyerbotskiy V.A., Chetyerbotskiy A.N. Estimation of cadmium contamination of agrocenosis by mathematical modeling methods // Agrochemistry. 2020. No. 4. P. 85–93 (in Russian). doi: 10.31857/S0002188120040031
22. Salmanzadeh M., Hartland A., Stirling C.H., Balks M.R., Schipper L.A., Joshi C., George E. Isotope tracing of long-term cadmium fluxes in an agricultural soil // Environ. Sci. Technol. 2017. V. 51. No. 13. P. 7369–7377. doi: 10.1021/acs.est.7b00858
23. Defarge N., Spiroux de Vendômois J., Séralini G.E. Toxicity of formulants and heavy metals in glyphosatebased herbicides and other pesticides //Toxicol. Rep. 2018. V. 5. P. 156–163. doi: 10.1016/j.toxrep.2017.12.025
24. Jacques M.T., Bornhorst J., Soares M.V., Schwerdtle T., Garcia S., Ávila D.S. Reprotoxicity of glyphosatebased formulation in Caenorhabditis elegans is not due to the active ingredient only // Environ. Pollut. 2019. V. 252 (Pt B). P. 1854–1862. doi: 10.1016/j.envpol.2019.06.099
25. Shupletsova O.N., Tovstik E.V. Accumulation of cadmium and zinc in barley regenerants on a provocative soil background with cadmium // Proceedings on Applied Botany, Genetics and Breeding. 2021. V. 182. No. 4. P. 117–125 (in Russian). doi: 10.30901/2227-8834-2021-4-117-125
26. Tuktarova Yu.V., Farkhutdinov R.G. Bioaccumulation of heavy metals in the soil-plant-bee-honey trophic chain // Agrochemistry. 2013. No. 6. P. 78–82.
27. Liu G., Xue W., Wang J., Liu X. Transport behavior of variable charge soil particle size fractions and their influence on cadmium transport in saturated porous media // Geoderma. 2019. V. 337. P. 945–955. doi: 10.1016/j.geoderma.2018.11.016
28. Kaloev B.S., Kumsiev E.I. Monitoring of heavy metals in the system “soil–plant food” // Izvestiya Gorskogo gosudarstvennogo agrarnogo universiteta. 2014. V. 51. No. 4. P. 170–174 (in Russian).
29. Fajzullina R.A., Mal'cev S.V. Metabolism of trace elements and diseases of the digestive system // Diseases of the stomach and duodenum in children / Eds. S.V. Bel'mer, A.Yu. Razumovskiy, A.I. Havkin. Мoskva: ID ”MEDPRAKTIKA-M”, 2017. P. 218–253 (in Russian).
30. Tinkov A.A. Gritsenko V.A., Skalnaya M.G., Cherkasov S.V., Aaseth J., Skalny A.V. Gut as a target for cadmium toxicity // Environ. Pollut. 2018. V. 235. P. 429–434. doi: 10.1016/j.envpol.2017.12.114
31. Akhpolova V.O., Brin V.B. Actual concepts of heavy metals’ kinetics and pathogenesis of toxicity // Journal of New Medical Technologies. 2020. V. 27. No. 1. P. 55–61 (in Russian). doi: 10.24411/1609-2163-2020-16578
32. Andjelkovic M., Buha Djordjevic A., Antonijevic E., Antonijevic B., Stanic M., Kotur-Stevuljevic J., Spasojevic-Kalimanovska V., Jovanovic M., Boricic N., Wallace D., Bulat Z. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney // Int. J. Environ. Res. Public Health. 2019. V. 16. No. 2. Article No. 274. doi: 10.3390/ijerph16020274
33. Fazlieva A.S., Daukaev R.A., Karimov D.O. Influence of cadmium on population health and methods for preventing its toxic effects // Occupational Health and Human Ecology. 2022. V. 1. P. 220–235 (in Russian). doi: 10.24411/2411 -3794-2022-10115
34. Aoshima K. Itai-itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium – historical review and perspectives // Soil Sci. Plant Nutr. 2016. V. 62. No. 4. P. 319–326. doi: 10.1080/00380768.2016.1159116
35. Lastkov D.O., Dubovaya A.V., Ezheleva M.I., Ostrenko V.V. Assessment of biomarkers as indicators of heavy metals’ influence on the health of the adult population // University Clinic. 2023. V. 3. No. 44. P. 5–12 (in Russian).
36. Suhani I., Sahab S., Srivastava V., Singh R.P. Impact of cadmium pollution on food safety and human health // Curr. Opin. Toxicol. 2021. V. 27. P. 1–7. doi: 10.1016/j.cotox.2021.04.004
37. Rakhymgozhina A., Atabayeva S., Shoinbekova S., Asrandina S., Doktyrbay G. Effect of plant growth regulators on rice plants (Oryza sativa L.) growth under cadmium stress // BIO Web Conf. 2024. V. 100. Article No. 02001. doi: 10.1051/bioconf/202410002001
38. Khan S., Naushad M., Lima E.C., Zhang S., Shaheen S.M., Rinklebe J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies – A review //  J. Hazard. Mater. 2021. V. 417. Article No. 126039. doi: 10.1016/j.jhazmat.2021.126039
39. Ediene V., Umoetok S. Concentration of heavy metals in soils at the municipal dumpsite in Calabar metropolis // Asian Journal of Environment & Ecology. 2017. V. 3. No. 2. P. 1–11. doi: 10.9734/AJEE/2017/34236
40. Selyukova S.V. Heavy metals concentration in organic fertilizers // Agrohimicheskij vestnik. 2016. No. 5. P. 47–51 (in Russian).
41. Matinyan Ya.N., Reymann K., Bakhmatova K.A., Rusakov A.V. The background concentrations of heavy metals and As in arable soils of the Baltic region // Biological Communications. 2007. No. 3. P. 123–134 (in Russian).
42. Zabashta A.V., Zabashta N.N., Lisovitckaya E.P. Accumulation of heavy metals in soils of foothal areas of Krasnodar Kray // Vestnik of Kazan State Agrarian University. 2019. V. 14. No. 1. P. 22–26 (in Russian). doi: 10.12737/article_5ccedba6e0c8c9.68580698
43. Tovstik E.V., Kazakova A.A. The influence of soil acidity on the migration of zinc and cadmium in the soilplant system // Tendencii razvitiya nauki i obrazovaniya. 2019. No. 50–1. P. 40–43 (in Russian). doi: 10.18411/lj-05-2019-12
44. Evtushkova E.P., Soloshenko A.I. Monitoring of agrochemical indicators of fertility of arable soils of the Tyumen region // International Agricultural Journal. 2023. V. 66. No. 4. P. 1225–1249 (in Russian). doi: 10.55186/25876740_2023_7_4_14
45. Komarov V.I., Selivanov O.G., Martsev A.A., Podoletc A.A., Lukyanov S.N. Heavy metals contamination in arable horizon of soils of agricultural appointment of the Vladimir region // Agrochemistry. 2019. No. 12. P. 75–82 (in Russian). doi: 10.1134/S0002188119100089
46. Ermakova S.V. Heavy metal content in soils of agricultural land in south-eastern Kamchatka on the territory of the Yelizovsky district // Natural resources, their current state, protection, commercial and technical utilization: materialy Nacional'noy (vserossijskoy) nauchnoprakticheskoy konferencii. Petropavlovsk-Kamchatsky: KamchatGTU, 2022. P. 169–172 (in Russian).
47. Zhao C., Ren S., Zuo Q., Wang S., Zhou Y., Liu W., Liang S. Effect of nanohydroxyapatite on cadmium leaching and environmental risks under simulated acid rain // Sci. Total Environ. 2018. V. 627. P. 553–560. doi: 10.1016/j.scitotenv.2018.01.267
48. Slabko Y.I., Lopatina A.A. Cadmium accumulation in soil and plants of soybean under the influence of mineral fertilizers // The Bulletin of KrasGAU. 2016. No. 2. P. 19–23 (in Russian).
49. Syrchina N.V., Ashikhmina T.Ya., Bogatyryova N.N., Kantor G.Ya. Prospects for using phosphate rock enrichment tailings as fertilizers for organic farming // Theoretical and Applied Ecology. 2020. No. 1. P. 160–166 (in Russian). doi: 10.25750/1995-4301-2020-1-160-166
50. Kuzmin S.V., Rusakov V.N., Setko A.G., Sinitsyna O.O. Toxicological and hygienic aspects of the dietary cadmium intake and its human health effects: a literature review // Public Health and Life Environment – PH&LE. 2024. No. 32 (7). P. 49–57 (in Russian). doi: 10.35627/2219-5238/2023-32-7-49-57
51. Schaefer H.R., Dennis S., Fitzpatrick S. Cadmium: Mitigation strategies to reduce dietary exposure // J. Food Sci. 2020. V. 85. No. 2. P. 260–267. doi: 10.1111/1750-3841.14997
52. Kulikova E.G., Blinokhvatova Yu.V. Safety and quality of food products, food raw materials and feed in conditions of intensive production technologies // Surskiy vestnik. 2021. No. 1. P. 15–18 (in Russian). doi: 10.36461/2619-1202_2021_13_01_003
53. Song Y., Wang Y., Mao W., Sui H., Yong L., Yang D., Jiang D., Zhang L., Gong Y. Dietary cadmium exposure assessment among the Chinese population // PloS One. 2017. V. 12. No. 5. Article No. e0177978. doi: 10.1371/journal.pone.0177978
54. Panov A.V., Trapeznikov A.V., Korzhavin A.V., Sidorova E.V., Korneev Yu.N. Heavy metals and arsenic in foodstuffs in the vicinity of industrial enterprises and nuclear power plant // Gigiena i sanitariya. 2023. V. 102. No. 1. P. 70–76 (in Russian). doi: 10.47470/0016-9900-2023-102-1-70-76
55. Shur P.Z., Fokin V.A., Novosyolov V.G. On the issue of assessing the acceptable daily intake of cadmium with food // Zdorov’e naseleniya i sreda obitaniya. 2015. No. 12 (273). P. 30–32 (in Russian).
56. Han X.Q., Xiao X.Y., Guo Z.H., Xie Y.H., Zhu H.W., Peng C., Liang Y.Q. Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management // Ecotoxicol. Environ. Saf. 2018. V. 159. P. 38–45. doi: 10.1016/j.ecoenv.2018.04.049
57. Koptsik G.N. Modern approaches to remediation of heavy metal polluted soils: a review // Eurasian Soil Sc. 2014. V. 47. No. 7. P. 707–722. doi: 10.1134/S1064229314070072
58. Tao Q., Zhao J., Li J., Liu Y., Luo J., Yuan S., Li B., Li Q., Xu Q., Yu X., Huang H., Li T., Wang C. Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in Cd-hyperaccumulator Sedum alfredii // J. Hazard. Mater. 2020. V. 383. Article No. 121177. doi: 10.1016/j.jhazmat.2019.121177
59. Wen J., Zhou J., Zhang R., Ren W., Zhao J., Cai D. Current advances of the valorization technologies for heavy metal containing hyperaccumulators // Ind. Crop. Prod. 2024. V. 209. No. 1. Article No. 118051. doi: 10.1016/j.indcrop.2024.118051
60. Liu S., Ali S., Yang R., Tao J., Ren B. A newly discovered Cd-hyperaccumulator Lantana camara L. // J. Hazard. Mater. 2019. V. 371. P. 233–242. doi: 10.1016/j.jhazmat.2019.03.016
61. Dhaliwal S.S., Sharma V., Kaur J., Shukla A.K., Singh J., Singh P. Cadmium phytoremediation potential of Brassica genotypes grown in Cd spiked Loamy sand soils: Accumulation and tolerance // Chemosphere. 2022. V. 302. Article No. 134842. doi: 10.1016/j.chemosphere.2022.134842
62. Frunze O.V. Sorption capacity of some types of ornamental herbaceous plants under conditions of controlled soil contamination with cadmium ions // Bulletin of Donetsk National University. Series A: Natural Sciences. 2023. No. 1. P. 105–111 (in Russian).
63. Mench M., Tancogne J., Gomez A., Juste C. Cadmium bioavailability to Nicotiana tabacum L., Nicotiana rustica L., and Zea mays L. grown in soil amended or not amended with cadmium nitrate // Biol. Fert. Soils. 1989. V. 8. P. 48–53. doi: 10.1007/BF00260515
64. Li C., Zhang C., Yu T., Liu X., Yang Y., Hou Q., Yang Z., Ma X., Wang L. Use of artificial neural network
to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values // Environ. Pollut. 2022. V. 304. Article No. 119234. doi: 10.1016/j.envpol.2022.119234
65. Pinto E., Cruz M., Ramos P., Santos A., Almeida A. Metals transfer from tobacco to cigarette smoke: Evidences in smokers’ lung tissue // J. Hazard. Mater. 2017. V. 325. P. 31–35. doi: 10.1016/j.jhazmat.2016.11.069
66. Hakimova L.R., Blagova D.K., Lavina A.M., Serbaeva E.R., Sadykova L.R., Vershinina Z.R., Bajmiev Al.Kh. Creation of microbial-plant communities for phytoremediation // Doklady Bashkirskogo Universiteta. 2018. V. 3. No. 4. P. 473–476 (in Russian).
67. Vershinina Z.R., Maslennikova D.R., Chubukova O.V., Khakimova L.R., Fedyaev V.V. Contribution of artificially synthesized phytonelatin, encoded by the gene PPH6HIS to increase the phytoremediative qualities of tobacco plants // Russ. J. Plant Physiol. 2022. V. 69. No. 4. Article No. 71. doi: 10.1134/S1021443722040185
68. Meng L., Huang T., Shi J., Chen J., Zhong F., Wu L., Xu J. Decreasing cadmium uptake of rice (Oryza sativa L.) in the cadmium-contaminated paddy field through different cultivars coupling with appropriate soil amendments // J. Soils Sediments. 2019. V. 19. P. 1788–1798. doi: 10.1007/s11368-018-2186-x
69. Yang Q., Yang C., Yu H., Zhao Z., Bai Z. The addition of degradable chelating agents enhances maize phytoremediation efficiency in Cd-contaminated soils // Chemosphere. 2021. V. 269. Article No. 129373. doi: 10.1016/j.chemosphere.2020.129373
70. Li Y., Wei S., Chen X., Dong Y., Zeng M., Yan C., Hou L., Jiao R. Isolation of cadmium-resistance and siderophore-producing endophytic bacteria and their potential use for soil cadmium remediation // Heliyon. 2023. V. 9. No. 7. Article No. e17661. doi: 10.1016/j.heliyon.2023.e17661
71. Khan M.A., Khan S., Khan A., Alam M. Soil contamination with cadmium, consequences and remediation using organic amendments // Sci. Total Environ. 2017. V. 601–602. P. 1591–1605. doi: 10.1016/j.scitotenv.2017.06.030
72. Kuramshina Z.M., Smirnova Y.V., Khairullin R.M. Cadmium and nickel toxicity for Sinapis alba plants inoculated with endophytic strains of Bacillus subtilis // Russ. J. Plant Physiol. 2018. V. 65. No. 2. P. 269–277. doi: 10.1134/S1021443718010077
73. Kuramshina Z.M., Smirnova Y.V., Khairullin R.M. Increasing -riticum aestivum tolerance to cadmium stress through endophytic strains of Bacillus subtilis // Russ. J. Plant Physiol. 2016. V. 63. No. 5. P. 636–644. doi: 10.1134/S102144371605008
74. Hamid Y., Tang L., Sohail M.I., Cao X., Hussain B., Aziz M.Z., Usman M., He Z., Yang X. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain // Sci. Total Environ. 2019. V. 660. P. 80–96. doi: 10.1016/j.scitotenv.2018.12.419
75. Sarwar N., Saifullah, Malhi S.S., Zia M.H., Naeem A., Bibi S., Farid G. Role of mineral nutrition in minimizing cadmium accumulation by plants // J. Sci. Food Agric. 2010. V. 90. No. 6. P. 925–937. doi: 10.1002/jsfa.3916
76. Chen H., Zhang W., Yang X., Wang P., McGrath S.P., Zhao F.J. Effective methods to reduce cadmium accumulation in rice grain // Chemosphere. 2018. V. 207. P. 699–707. doi: 10.1016/j.chemosphere.2018.05.143
77. Rizwan M., Ali S., Abbas T., Zia-Ur-Rehman M., Hannan F., Keller C., Al-Wabel M.I., Ok Y.S. Cadmium minimization in wheat: a critical review // Ecotoxicol. Environ. Saf. 2016. V. 130. P. 43–53. doi: 10.1016/j.ecoenv.2016.04.001
78. Xiang H., Lan N., Wang F., Zhao B., Wei H., Zhang J. An effective planting model to decrease cadmium accumulation in rice grain and plant: Intercropping rice with wetland plants // Pedosphere. 2023. V. 33. No. 2. P. 355–364. doi: 10.1016/j.pedsph.2022.06.054
79. Deng L., Li Z., Wang J., Liu H., Li N., Wu L., Hu P., Luo Y., Christie P. Long-term field phytoextraction of
zinc/cadmium contaminated soil by Sedum plumbizincicolaunder different agronomic strategies // Int. J. Phytoremediation. 2016. V. 18. No. 2. P. 134–140. doi: 10.1080/15226514.2015.1058328
80. Grant C.A., Clarke J.M., Duguid S., Chaney R.L. Selection and breeding of plant cultivars to minimize cadmium accumulation // Sci. Total Environ. 2008. V. 390. No. 2–3. P. 301–310. doi: 10.1016/j.scitotenv.2007.10.038
81. Shirokikh I.G., Shupletsova O.N., Tovstik E.V., Ogorodnikova S.Yu., Nazarova Ya.I., Berezin G.I. Comprehensive assessment of barley plants regenerated from resistant to cadmium callus lines // Agricultural Science Euro-North-East. 2018. No. 4 (65). P. 19–29 (in Russian). doi: 10.30766/2072-9081.2018.65.4.19-29
82. Hussain B., Umer M.J., Li J., Ma Y., Abbas Y., Ashraf M.N., Tahir N., Ullah A., Gogoi N., Farooq M. Strategies for reducing cadmium accumulation in rice grains // J. Clean. Prod. 2021. V. 286. Article No. 125557. doi: 10.1016/j.jclepro.2020.125557
83. Sebastian A., Prasad M.N.V. Cadmium minimization in rice. A review // Agron. Sustain. Dev. 2014. V. 34. P. 155–173. doi: 10.1007/s13593-013-0152-y
84. Majumder S., Powell M.A., Biswas P.K., Banik P. The role of agronomic factors (rice cultivation practices and soil amendments) on Arsenic fractionation: A strategy to minimise Arsenic uptake by rice, with some observations related to cadmium // Catena. 2021. V. 206. Article No. 105556. doi: 10.1016/j.catena.2021.105556





Прикреплённые файлы:




<< Содержание номера
<< Архив

Дата последнего обновления: 11:24:48/27.03.25
   
     
       
 
ИАА "Информ-Экология"


   
     
 
       
 
Министерство природных ресурсов Российской Федерации


   
     
 
       
 
Счётчик


   
     
 
© Designed&Powered by 77mo.ru. 2007. All rights Reserved.