|
|
|
|
|
№4, 2024: Теоретические проблемы экологии |
<< Содержание номера << Архив
 [RUS] / [ENG]Теоретические проблемы экологии Химический состав и сорбционная активность сапропелей (обзор) М. Л. Сазанова1, к. б. н., доцент, н. с.,
А. В. Сазанов2, к. б. н., и. о. зав. кафедрой,
И. А. Жуйкова2, к. г. н., доцент,
Л. В. Тугаринов3, директор по науке,
1Институт биологии Коми научного центра
Уральского отделения Российской академии наук,
167982, Россия, г. Сыктывкар, ул. Коммунистическая, д. 28,
2Вятский государственный университет,
610000, Россия, г. Киров, ул. Московская, д. 36,
3ООО «ГлавАгроСнаб»,
656067, Россия, г. Барнаул, ул. Попова, д. 208 M. L. Sazanova1ORCID: 0000-0003-3492-8395,
А. V. Sazanov2ORCID: 0000-0002-6934-3330,
I. A. Zhuikova2ORCID: 0000-0001-7855-604X,
L. V. Tugarinov3ORCID: 0009-0001-5523-3683,
1Institute of Biology of Komi Scientific Centre of the Ural Branch
of the Russian Academy of Sciences,
28, Kommunisticheskaya St., Syktyvkar, Russia, 167982,
2Vyatka State University,
36, Moskovskaya St., Kirov, Russia, 610000,
3GlavAgroSnab Ltd,
208, Popova St., Barnaul, Russia, 656067
e-mail
[email protected], [email protected]
Аннотация
В последние годы остро стоит вопрос об удалении из окружающей среды либо снижении токсичности поступающих загрязнителей в соответствии с принципами «зелёной химии». «Зелёная утизизация» токсикантов с помощью сорбентов подразумевает использование возобновляемых природных сорбентов с низкой себестоимостью и высокой эффективностью, а также возможность повторного использования сырья. Данным принципам вполне соответствуют пресноводные сапропели. Химический состав сапропелей включает органические и неорганические вещества, преобладание минеральной части определяет тип сапропеля. Состав минеральной части зависит от географического положения, геохимического состава отложений водоёма, химического состава воды, поступающей в озёрную толщу и других факторов. Общее содержание N, P, K, Са и илистой фракции обусловливает агрохимическую эффективность сапропелей; известковистые сапропели характеризуются наибольшей концентрацией макроэлементов, а органо-кремнезёмистые – наибольшей концентрацией микроэлементов. Сапропели с невысоким содержанием P и K могут быть использованы для производства гуминовых препаратов, мелиорантов и препаратов для детоксикации, ремедиации и рекультивации деградированных и загрязнённых почв. Органическая составляющая сапропелей включает липиды, простые и сложные эфиры, карбоновые кислоты, стерины, спирты, кетоны, пигменты, углеводороды, порфирины, витамины, ферменты и др., что активно используется в бальнеотерапии. Наличие на поверхности гуминовых веществ в составе сапропелей большого количества азот- и кислородсодержащих функциональных групп обусловливает высокую сорбционную способность. Синтезированные с использованием сапропеля сорбенты эффективны в очистке сточных вод/водных поверхностей от нефти и нефтепродуктов, фенола и других органических загрязнителей, тяжёлых металлов, фторидов, красителей. Широкое распространение сапропелей в пределах водоёмов умеренного пояса, низкая стоимость, достаточно простая технология добычи и применения, наряду с высокими сорбционными свойствами делают перспективным использование этого природного сырья в качестве сорбентов / для производства сорбентов для очищения водоёмов, сточных вод и почв от тяжёлых металлов и нефтяных углеводородов, ремедиации загрязнённых нефтепродуктами и радионуклидами почв.
Abstract
Recently the removing from the environment or reducing the toxicity of pollutants in accordance with the principles of “green chemistry” is acute. “Green utilization” of toxicants by means of sorbents implies the use of renewable natural sorbents with low cost and high efficiency, as well as the possibility of raw materials reuse. Freshwater sapropels meet these principles quite well. The sapropels include organic and inorganic substances, the predominance of the mineral part determines the sapropel type. The composition of the mineral part depends on the geographical location, geochemical composition of the reservoir sediments, chemical composition of water entering the lake bed and other factors. The N, P, K, Ca and silt fraction total content determines the agrochemical efficiency of sapropels; calcareous sapropels are characterized by the highest concentration of macroelements, and organic-silica sapropels – by the highest concentration of trace elements. Sapropels with P and K low content can be used for production of humic preparations, ameliorants and preparations for detoxification, remediation and recultivation of degraded and polluted soils. The organic component of sapropels includes lipids, simple and esters, carboxylic acids, sterols, alcohols, ketones, pigments, hydrocarbons, porphyrins, vitamins, enzymes, etc., which is actively used in balneotherapy. The presence of a large number of nitrogen- and oxygen-containing functional groups on the surface of humic substances in sapropel is responsible for high sorption capacity. The sorbents synthesized using sapropel are effective in wastewater/water surface treatment from oil and oil products, phenol and other organic pollutants, heavy metals, fluorides, dyes. The wide distribution of sapropels within the temperate zone water bodies, low cost, simple enough technology of extraction and application, along with high sorption properties make it promising to use this natural raw material as sorbents / for the production of sorbents for purification of water bodies, wastewater and soils from heavy metals and petroleum hydrocarbons, remediation of soils contaminated with petroleum products and radionuclides.
Ключевые слова
сапропели, сорбенты, гуминовые кислоты, фульвокислоты, «зелёная утилизация», ремедиация.
Keywords
sapropel, sorbent, humic acids, fulvic acids, “green utilization”, remediation
References
1. Yurak V.V., Apakashev R.A., Lebzin M.S., Malyshev A.N. Composite sorbents from natural and man-made raw materials: optimization of composition for reclamation // MIAB. Mining Inf. Anal. Bull. 2023. No. 12-1. P. 177–191 (in Russian). doi: 10.25018/0236_1493_2023_121_0_177
2. Zagrebin E.M., Sosnov A.V., Sadovnikov S.V., Zemlyakova M.A., Putsykin Y.G., Shapovalov A.A. New hightech sorbents and sorbents-bio-destructors based on humic acids as remediation and remediation of contaminated soils // Theoretical and Applied Ecology. 2012. No. 4. P. 21–29 (in Russian). doi: 10.25750/1995-4301-2012-4-029-037
3. Lisichkin G.V., Kulakova I.I. Elimination of emergency oil spills: state and problems (review) // Russian Journal of Applied Chemistry. 2022. V. 95. No. 9. P. 1082–1110 (in Russian) doi: 10.31857/S0044461822090018
4. Chaplina T.O., Pakhnenko V.P. Peculiarities of surface water purification from hydrocarbons using natural sorbents // Theoretical and Applied Ecology. 2022. No. 4. P. 38–44. doi: 10.25750/1995-4301-2022-4-038-044
5. Song C., Sun S., Wang J., Gao Y., Yu G., Li Y., Liu Z., Zhang W., Zhou L. Applying fulvic acid for sediment metals remediation: Mechanism, factors, and prospect // Front. Microbiol. 2023. V. 13. Article No. 1084097. doi: 10.3389/fmicb.2022.1084097
6. Rubinshtein A.Ya. Biogenic soils. Moskva: Nauka, 1986. 87 p. (in Russian).
7. Shtin S.M. Lake sapropels and their complex development / Ed. I.M. Yaltants. Moskva: Izdatelstvo Moskovskogo gosudarstvennogo gornogo universiteta, 2005. 373 р. (in Russian).
8. Krivonos O.I., Belskaya O.B. A new waste-free integrated approach for sapropel processing using supercritical fluid extraction // J. Supercrit. Fluids. 2020. V. 166. Article No. 104991. doi: 10.1016/j.supflu.2020.104991
9. Anisimova T.Yu. Use of peat and sapropel resources in agriculture of non-chernozem zone of Russia: ststus of the issue and prospects // Problems of agrochemistry and ecology. 2022. No. 1. P. 51–58 (in Russian). doi: 10.26178/AE.2022.76.68.004
10. Starink M., Bär-Gilissen M.J., Bak R.P., Cappenberg T.E. Quantitative centrifugation to extract benthic protozoa from freshwater sediments // Appl. Environ. Microbiol. 1994. V. 60. No. 1. P. 167–173. doi: 10.1128/aem.60.1.167-173.1994
11. Gąsiorowski M., Sienkiewicz E. The sources of carbon and nitrogen in mountain lakes and the role of human activity in their modification determined by tracking stable isotope composition // Water Air Soil Pollut. 2013. V. 224. No. 4. Article No. 1498. doi: 10.1007/s11270-013-1498-0
12. Gąsiorowski M., Stienss J., Sienkiewicz E., Sekudewicz I. Geochemical variability of surface sediment in postmining lakes located in the Muskau Arch (Poland) and its relation to water chemistry // Water Air Soil Pollut. 2021. V. 232. Article No. 108. doi: 10.1007/s11270-021-05057-8
13. Stankevica K., Vincevica-Gaile Z., Klavins M. Freshwater sapropel (gyttja): its description, properties and opportunities of use in contemporary agriculture // Agronomy Research. 2016. V. 14. No. 3. P. 929–947.
14. Vincevica-Gaile Z., Stankevica K. Impact of micro- and macroelement content on potential use of freshwater sediments (gyttja) derived from lakes of eastern Latvia // Environ. Geochem. Health. 2018. V. 40. No. 5. P. 1725–1738. doi: 10.1007/s10653-017-9912-y
15. Vanadziņš I., Mārtiņsone I., Kļaviņa A., Komarovska L., Auce A., Dobkeviča L., Sprūdža D. Sapropel – mining characteristics and potential use in medicine // Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 2022. V. 76. No. 2. P. 188–197. doi: 10.2478/prolas-2022-0029
16. Kurzo B.V., Makarenko T.I., Hajdukiewich O.M. Opportunities of the joint development of peat and sapropel deposits for agricultural in Belarus // Trudy Instorfa. 2019. No. 19 (72). P. 26–32 (in Russian).
17. Albrektienė-Plačakė R., Bakšienė K., Gargasas J. Investigation on applying biodegradable material for removal of various substances (fluorides, nitrates and lead) from water // Materials. 2023. V. 16. Article No. 6519. doi: 10.3390/ma16196519
18. Bakšienė E., Ciūnys A. Dredging of lake and application of sapropel for improvement of light soil properties // J. Environ. Eng. Landscape Manage. 2012. V. 20. No. 2. P. 97–103. doi: 10.3846/16486897.2011.645824
19. Stankeviča K., Kļaviņš M. Sapropelis un tā izmantošanas iespējas // Materials Science and Applied Chemistry. 2013. V. 29. P. 109–126. doi: 10.7250/msac.2013.028
20. Topachevskiy I.V. Sapropels of freshwater reservoirs of Ukraine // Geologiya i poleznye iskopaemye mirovogo okeana. 2011. No. 1. P. 66–72 (in Russian).
21. Kamulali T.M., McGlue M.M., Stone J.R., Goodman P.J., Cohen A.S. Paleoecological analysis of Holocene sediment cores from the southern basin of Lake Tanganyika: implications for the future of the fishery in one of Africa’s largest lakes // J. Paleolimnol. 2022. V. 67. P. 17–34. doi: 10.1007/s10933-021-00219-4
22. Minakovskiy A.F., Ignatovets O.S., Shatilo V.I., Sergievich D. S., Bosak V.N.Characteristics and prospects of using different types of sapropel // Technological aspects of cultivation of agricultural crops: sbornik statey XVI Mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyashchennoy 100-letiyu kafedry zemledeliya. Gorki: BGSKhA, 2020. P. 105–107 (in Russian).
23. Maltsev A.E., Leonova G.A., Bobrov V.A., Krivonogov S.K. Geochemistry of Holocene sapropels from small lakes of the southern Western Siberia and eastern Baikal regions. Novosibirsk: Academic Publishing House “Geo”, 2019. 444 p. (in Russian). doi: 10.21782/B978-5-6041446-9-5
24. Mostovich E.A. Status and prospects of sapropel use and production // Moscow Economic Journal. 2020. No. 8. P. 116–125 (in Russian). doi: 10.24411/2413-046Х-2020-10591
25. Bobrov V.A., Leonova G.A., Orlova L.A. Krivonogov S.K., Fedorin M.A., Markova Y.N. Investigation into the elemental composition of sapropel from Lake Kirek (West Siberia) by SR XFA technique // Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2012. V. 6. No. 3. P. 458–463. doi: 10.1134/S1027451012050072
26. Georgievskiy V.I., Shevelev N.S., Khorolskiy A.A., Mitin B.E., Nikitin E.M., Ulasevich T.P. Chemical composition of sapropels of different deposits and the possibility of their use in livestock // Izvestiya TSKhA. 1988. No. 2. P. 155–161 (in Russian).
27. Adeeva L.N., Kovalenko T.A., Krivonos O.I., Plaksin G.V., Strunina N.N. Determination of the chemical composition of sapropel // Izvestiya Vysshikh Uchebnykh Zavedenii. Khimiya i Khimicheskaya Tekhnologiya. 2009. V. 52. No. 3. P. 121–123 (in Russian).
28. Eliseev A.N., Baguta M.Yu., Belova S.S., Stepanov A.A. Chemical composition and biological properties of sapropel // Vestnik Kurskoy gosudarstvennoy selskokhozyaystvennoy akademii. 2011. No. 1. P. 65–67 (in Russian).
29. Leonova G.A., Bobrov V.A., Lazareva E.V., Bogush A.A., Krivonogov S.K. Biogenic contribution of minor elements to organic matter of recent lacustrine sapropels (Lake Kirek as example) // Lithol. Miner. Resour. 2011. V. 46. P. 99–114. doi: 10.1134/S0024490211010044
30. Strakhovenko V.D., Taran O.P., Ermolaeva N.I. Geochemical characteristics of the sapropel sediments of small lakes in the Ob’-Irtysh interfluves // Russian Geology and Geophysics. 2014. V. 55. No. 10. P. 1160–1169. doi: 10.1016/j.rgg.2014.09.002
31. Grantina-Ievina L., Karlsons A., Andersone-Ozola U., Ievinsh G. Effect of freshwater sapropel on plants in respect to its growthaffecting activity and cultivable microorganism content // Zemdirbyste-Agriculture. 2014. V. 101. No. 4. P. 355–366. doi: 10.13080/z-a.2014.101.045
32. Agafonova L., Alsina I., Sokolov G., Kovrik S., Bambalov N., Apse J., Rak M. New kinds of sapropel and peat based fertilizers // Environment. Technology. Resources: Proceedings of the 10th International Scientific and Practical Conference. 2015. V. 2. P. 20–26. doi: 10.17770/etr2015vol2.271
33. Leonova G.A., Bobrov V.A., Krivonogov S.K., Bogush A.A., Bychinskii V.A., Mal’tsev A.E., Anoshin G.N. Biogeochemical specifics of sapropel formation in Cisbaikalian un-drained lakes (exemplified by Lake Ochki) // Russ. Geol. Geophys. 2015. V. 56. No. 5. P. 745–761. doi: 10.1016/j.rgg.2015.04.006
34. Uspenskaya О.N., Vasyuchkov I.Yu. Trace elements in sapropel – natural fertilizer material for organic farming // Agrochemistry. 2019. No. 10. P. 52–57 (in Russian). doi: 10.1134/S0002188119100132
35. Baricz A., Levei E.A., Şenilă M., Pînzaru S.C., Aluaş M., Vulpoi A., Filip C., Tripon C., Dădârlat D., Buda D.M., Dulf F.V., Pintea A., Cristea A., Muntean V., Keresztes Z.G., Alexe M., Banciu H.L.Comprehensive mineralogical and physicochemical characterization of recent sapropels from Romanian saline lakes for potential use in pelotherapy // Sci. Rep. 2021. V. 11. Article No. 18633. doi: 10.1038/s41598-021-97904-1
36. Bogush A.A., Leonova G.A., Krivonogov S.K., Bychinsky V.A., Bobrov V.A., Maltsev A.E., Tikhova V.D., Miroshnichenko L.V., Kondratyeva L.M., Kuzmina A.E. Biogeochemistry and element speciation in sapropel from freshwater Lake Dukhovoe (East Baikal region, Russia) // Appl. Geochem. 2022. V. 143. Article No. 105384. doi: 10.1016/j.apgeochem.2022.105384
37. Zhirkov I.I., Trofimova T.P., Yakutsk, Russia Sapropel resources of Lake Kubalakh, Yakutsk // Vestnik of North-Eastern Federal University. Earth Sciences. 2022. No. 2 (26). P. 39–46 (in Russian). doi: 10.25587/SVFU.2022.26.2.005
38. Sleptsova T.V., Abramov A.F. Assessing sapropel raw materials from lake deposits of the Sakha Republic Kobyai ulus (Yakutia) and its prospects use in agricultural production // Bulliten KrasSAU. 2022. No. 7. P. 46–51 (in Russian). doi: 10.36718/1819-4036-2022-7-46-51
39. Sazanov А.V., Sazanova M.L., Zhuikova I.A., Tugarinov L.V. Chemical composition assessment of sapropels from different deposits // Theoretical and Applied Ecology. 2024. No. 2. P. 108–116 (in Russian). doi: 10.25750/1995-4301-2024-2-108-116
40. Kostenkov N.M. Ecological and Agrochemical estimate of sedimentary deposits of lakes on marine terraces
of coast Sea of Japan // Theoretical and Applied Ecology. 2014. No. 2. P. 30–34 (in Russian). doi: 10.25750/1995-4301-2014-2-030-034
41. Yakimenko O.S., Terekhova V.A. Humic preparations and the assessment of their biological activity for certification purposes // Eurasian Soil Sci. 2011. V. 44. No. 11. P. 1222–1230. doi: 10.1134/S1064229311090183
42. Fedoseeva E.V., Terekhova V.A., Yakimenko O.S., Gladkova M.M. Ecotoxicological evaluation of commercial humates of different origin using microalgae Scenedesmus quadricauda // Theoretical and Applied Ecology. 2009. No. 4. P. 45–49(in Russian). doi: 10.25750/1995-4301-2009-4-045-049
43. Loskutov S.I., Pukhalsky Y.V., Mityukov A.S. Vorobyov N.I., Glushakov R.I. Effect of various fractions of an ultradispersed humate-sapropel suspension on the growth, development, and quality of basil (Ocimum basilicum L.) plants as compared to the use of chemical fertilizers // Russ. Agricult. Sci. 2023. V. 49. P. 627–633. doi: 10.3103/S1068367423060125
44. Rumyantsev V.A., Pukhalskii Ya.V., Loskutov S.I., Mityukov A.S., Vorob’yov N.I., Yakubovskaya A.I., Kameneva I.A., Nikiticheva G.V., Gorodnova L.A., Berdysheva K.N., Kovalchuk A.I., Meshcheryakov D.D. Use of a humate-sapropelic suspension when growing sunn hemp (Crotalaria juncea L.) in protected soil conditions (greenhouse) // Dokl. Earth Sci. 2024. V. 516. P. 774–780. doi: 10.1134/S1028334X24600865
45. Konoplev A.V., Popov V.E., Maskalchuk L.N. Development of amendments for rehabilitation of soils, contaminated by radionuclides, and assessment of their application efficacy // Radioprotection. 2009. V. 44. No. 5. P. 135–139. doi: 10.1051/radiopro/20095029
46. Vasileva G.K., Strizhakova E.R., Bocharnikova E.A., Semenyuk N.N., Yatsenko V.S., Slyusarevskiy A.V., Baryshnikova E.A. Oil and petroleum products as soil pollutants. Technology of combined physical and biological treatment of contaminated soils // Rossiyskiy khimicheskiy zhurnal. 2013. V. 57. No. 1. P. 79–104 (in Russian).
47. Zabolotskikh V.V., Tankih S.N., Vasilyev A.V. Technological approaches to detoxify and restore contaminated land // Izvestia of RAS SamSC. 2018. V. 20. No. 5-3 (85). P. 341–351 (in Russian).
48. Nevedrov N.P., Protsenko E.P., Zubkova T.A. Novel methodological approaches to the study of sorbents in soils polluted with heavy metals // Moscow Univ. Soil Sci. Bull. 2019. V. 74. P. 118–122. doi: 10.3103/S0147687419030062
49. Grigorev M., Grigoreva A., Sharvadze R., Chernogradskaya N., Stepanova S. The effectiveness of unconventional feed additives at feeding cattle in conditions Yakutia // Interagromash 2022: Proceedings of XV International Scientific Conference. Lecture Notes in Networks and Systems. Springer, Cham, 2023. V. 574. P. 156–166. doi: 10.1007/978-3-031-21432-5_17
50. Leonova G.A., Maltsev A.E., Melenevsky V.N., Krivonogov S.K., Kondratyeva L.M., Bobrov V.A., Suslova M.Y. Diagenetic transformation of organic matter in sapropel sediments of small lakes (southern West Siberia and eastern Transbaikalia) // Quat. Int. 2019. V. 524. P. 40–47. doi: 10.1016/j.quaint.2019.03.011
51. Pavlovska I., Klavina A., Auce A., Vanadzins I., Silova A., Komarovska L., Silamikele B., Dobkevica L., Paegle L. Assessment of sapropel use for pharmaceutical products according to legislation, pollution parameters, and concentration of biologically active substances // Sci. Rep. 2020. V. 10. Article No. 21527. doi: 10.1038/s41598-020-78498-6
52. Slukovskii Z.I., Dauvalter V.A. Features of Pb, Sb, Cd accumulation in sediments of small lakes in the south of the Republic of Karelia // Transactions of KarRC RAS. 2020. No. 4. P. 75–94 (in Russian). doi: 10.17076/lim1198
53. Tsybekmitova G.T., Kuklin A.P., Tsyganok V.I. Heavy metals in bottom sediments of Lake Kenon (the Trans-Baikal Territory, Russia) // Bull. Environ. Contam. Toxicol. 2019. V. 103. No. 2. P. 286–291. doi: 10.1007/s00128-019-02645-7
54. Taran O.P., Boltenkov V.V., Yermolaeva N.I., Zarubina E.Yu, Delii I.V., Romanov R.E., Strakhovenko V.D. Relations between the chemical composition of organic matter in lacustrine ecosystems and the genesis of their sapropel // Geochem. Int. 2018. V. 56. P. 256–265. doi: 10.1134/S0016702918030096.
55. Platonov V.V., Polovetskaya O.S. The features of chemical composition and the biological activity of sapropelae // Journal of New Medical Technologies. eEdition. 2012. No. 3. Article No. 2-24 [Internet resource] http://www.medtsu.tula.ru/VNMT/Bulletin/E2012-1/4066.pdf (Accessed: 01.02.2024) (in Russian).
56. Platonov V.V., Khadartsev A.A., Chunosov S.N., Fridzon K.Y. The biological effect of sapropel // Fundamental Research. 2014. No. 9-11. P. 2474–2480 (in Russian).
57. Kilina E.S., Tronova T.M., Klopotova N.G. Biological activity of therapeutic sapropelic muds of Siberia // Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoy kultury. 1997. No. 2. P. 23–25 (in Russian).
58. Zavarzina A.G., Danchenko N.N., Demin V.V. Artemyeva Z.S., Kogut B.M. Humic Substances: Hypotheses and Reality (a Review) // Eurasian Soil Sc. 2021. V. 54. P. 1826–1854. doi: 10.1134/S1064229321120164
59. Strus O.Y. Study of sapropel extracts from Prybych natural deposits // J. Chem. Pharm. Res. 2015. V. 7. No. 6. P. 133–137.
60. Adeeva L.N., Platonova D.S., Masorov M.S., Didenko T.A. Humic acids from silica sapropel: infrared spectroscopic and thermal analysis // Butlerov Communications. 2013. V. 34. No. 6. P. 65–69 (in Russian).
61. Sherysheva N.G. Bacteriobenthos of sapropel of sulfide lake Shungaldan (National Park “Mari Chodra”, Mari El Republic) // Izvestiya of RAS SamSC. 2023. V. 25. No. 5 (115). P. 195–202 (in Russian).
62. Sleinus D., Sinka M., Korjakins A., Obuka V., Nikolajeva V., Brencis R., Savicka E. Properties of sound absorption composite materials developed using flax fiber, sphagnum moss, vermiculite, and sapropel // Materials. 2023. V. 16. No. 3. Article No. 1060. doi: 10.3390/ma16031060.
63. Vėjelis S., Karimova M.B., Kuatbayeva T.K., Kairytė A., Šeputytė-Jucikė J. Sapropel as a binding material for wood processing waste in the development of thermal insulation biocomposite // Materials. 2023. V. 16. No. 6. Article No. 2230. doi: 10.3390/ma16062230
64. Balčiūnas G., Žvironaitė J., Vėjelis S., Jagniatinskis A., Gaidučis S. Ecological, thermal and acoustical insulating composite from hemp shives and sapropel binder // Industrial Crops and Products. 2016. V. 91. P. 286–294. doi: 10.1016/j.indcrop.2016.06.034
65. Adeeva L.N., Platonova D.S., Puzhel A.V., Didenko T.A., Belykh N.A. Bifunctional sorbent for sewage treatment obtained from sapropel // Butlerovskie soobshcheniya. 2013. V. 34. No. 6. P. 70–75 (in Russian).
66. Potapova I.A., Agliulin V.K., Purygin P.P., Zarubin Yu.P., Maksimov N.M. Humic acids as adsorbents of sulfur and other harmful impurities from oil products // Butlerov Communications. 2023. V. 76. No. 10. Р. 21–29 (in Russian). doi: 10.37952/ROI-jbc-01/23-76-10-21
67. Lavrenov A.V., P’yanova L.G., Sedanova A.V., Luzyanina L.S. Nanostructured carbon sorbent impregnated with betulin // Solid Fuel Chem. 2015. V. 49. P. 7–13 doi: 10.3103/S0361521915010085
68. Zhang Z., Liu S., Wang X., Huang S., Sun K., Xia X. Differences in structure and composition of soil humic substances and their binding for polycyclic aromatic hydrocarbons in different climatic zones // Environ. Pollut. 2023. V. 322. Article No.121121. doi: 10.1016/j.envpol.2023.121121
69. Kirejcheva L.V., Khokhlova O.B. Sorbent for integrated treatment of water and ground to remove petroleum products and heavy metals // Patent RU 2198987 С2. Application: 2000132355/13, 25.12.2000. Date of publication: 20.02.2003. Bull. 5 (in Russian).
70. Adeeva L.N., Kovalenko T.A. Removal of organic substances and metal ions from water using a carbonmineral sapropel sorbent // Russ. J. Appl. Chem. 2012. V. 85. P. 557–563. doi: 10.1134/S1070427212040040
71. Krivonos O.I., Terekhova E.N., Babenko A.V., Arbuzov A.B., Belskaya O.B. Conversion of sapropel on СоМо/Al2O3 catalyst in supercritical ethanol // Petroleum Chemistry. 2021. V. 61. No. 2. P. 157–165 (in Russian). doi: 10.31857/S0028242121020039
72. Latypova D.R., Badamshin A.G., Kuleshov S.P. Timashev E.O., Kulnitskiy B.A., Tomilov Yu.V., Nifantiev N.E., Dokichev V.A. New high-efficiency carbonsilica sorbent // Russ. J. Appl. Chem. 2015. V. 88. No. 9. P. 1428–1433. doi: 10.1134/S1070427215090074
73. Plaksin G.V., Levitskij V.A., Chernyshev A.K., Shipitsyn D.V., Tret’jakov A.G., Likholobov V.A. Porous carbon material preparation process // Patent RU 2264253 С1. Application: 2004102619/15, 29.01.2004. Date of publication: 20.11.2005. Bull. 32 (in Russian).
74. Platonova D.S., Bednyuk A.E., Adeeva L.N. Sorption of phenol by modified humin sorbent from sapropel // Herald of Omsk University. 2017. No. 2 (84). P. 56–59 (in Russian).
75. Birgėlaitė R., Valskys V., Ignatavičius G. Use of sapropel for removal of heavy metals from solution // Sci. – Future Lith. 2016. V. 8. No. 4. P. 388–396 (in Lithuanian). doi: 10.3846/mla.2016.946
76. Krivonos O.I., Babenko A.V., Belskaya O.B. New approaches for regulation of structure and adsorption properties of biochar based on freshwater sediments (sapropels) // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024. V. 680. Article No. 132717. doi: 10.1016/j.colsurfa.2023.132717
77. Zykova I.V., Isakov V.A., Solov’eva A.M. Preparation and characterization of carbon-mineral sorbents based on sapropel from Novgorod oblast. Part 2 // Fibre Chem. 2019. V. 50. No. 6. Р. 491–495. doi: 10.1007/s10692-019-10016-5
78. Gladkikh S.N. Sorption method of discoloration of high-color surface natural waters // Trudy Rostovskogo gosudarstvennogo universiteta putej soobshcheniya. 2023. No. 1. P. 32–36 (in Russian).
79. Fang X., Zhang M., Zheng P., Wang H., Wang K., Lv J., Shi F. Biochar-bacteria-plant combined potential for remediation of oil-contaminated soil // Front. Microbiol. 2024. V. 15. Article No. 1343366. doi: 10.3389/fmicb.2024.1343366
80. Belik E. Intensification of bioremediation of oil contaminated soils with biosorbents on the basis carbonizate // Vestnik PNIPU. Prikladnaya ekologiya. Urbanistika. 2014. No. 3 (15). P. 127–139 (in Russian).
81. Fokina H.B., Myazin B.A., Gubkina T.G. Studies of soil purification from oil using sorbents of different modification in the conditions of laboratory experiment // Ecological problems of northern regions and ways of their solution: materialy V Vseross. nauch. konf. s mezhdunar. uchastiem. V. 2. Apatity: KNTs RAN, 2014. Р. 86–90 (in Russian).
82. Buluktaev A.A., Adyanova A.B., Jimbeev N.V., Mukabenova R.A., Mandzhieva S.S., Vasilyeva G.K. Use of natural organic sorbents to increase the effectiveness of bioremediation of oil-polluted soils of the Republic of Kalmykia // Steppe Science. 2023. No. 4. P. 146–161 (in Russian). doi: 10.24412/2712-8628-2023-4-146-161
83. Terekhova E.N., Lavrenov A.V., Krivonos O.I. Effect of chemical treatment on properties of carbon-mineral materials from sapropel // Izvestiya Vuzov. Khimiya i Khimicheskaya Tekhnologiya. 2016. V. 59. Nо. 8. P. 90–95 (in Russian).
84. Fomicheva N.V., Smirnova Yu.D., Rabinovich G.Yu. Influence of new humic preparation on remediation of oilcontaminated soil // Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya. 2022. V. 12. No. 2. P. 310–320 (in Russian). doi: 10.21285/2227-2925-2022-12-2-310-320
85. Vaysman Ya.I., Glushankova I.S., Rudakova L.V., Kumi V.V., Tokarev I.P. Development of technology remediation soil contaminated by oil using Gumikom // Neftyanoe khozyaystvo. 2013. No. 10. P. 128–131 (in Russian).
86. Minnikova T., Kolesnikov S., Revina S., Ruseva A., Gaivoronsky V. Enzymatic assessment of the state of oilcontaminated soils in the South of Russia after bioremediation // Toxics. 2023. V. 11. Article No. 355. doi: 10.3390/toxics11040355
87. Nazarov A.M., Tuktarova I.O., Davletshin T.K., Chetverikov S.P. Processing and research of effectiveness of new biopreparates based on Rhodococcus sp. H33, gumates and lignosulfonates for the cleaning of neftezainously contaminated soils // Neftegazovoe delo. 2023. V. 21. No. 6. P. 310–321 (in Russian). doi: 10.17122/ngdelo-2023-6-310-321
88. Minnikova T.V., Kolesnikov S.I., Kazeev K.S. Impact of ameliorants on the biological condition of oil-contaminated black soil // Soil Env. 2019. V. 38. P. 170–180. doi: 10.25252/SE/19/101872
89. Gretchischeva N.Yu., Perminova I.V., Mescheryakov S.V. Humic compounds in treatment of oil contaminated environments // Ecology and Industry of Russia. 2016 . V . 20. No. 1. P. 30–36 (in Russian). doi: 10.18412/1816-0395-2016-1-30-36
90. Grechishcheva N.Yu., Fekhretdinova D.R., Murygina V.P., Gaydamaka S.N. Evaluation of the effectiveness of humic substances use as washing agents of oil-contaminated soils // Environmental protection in oil and gas complex. 2019. No. 6 (291). P. 22–26 (in Russian). doi: 10.33285/2411-7013-2019-6(291)-22-26
91. Aggarwal S., Chakravarty A., Ikram S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization and thereof strategies // Int. J. Biol. Macromol. 2021. V. 167. P. 962–986. doi: 10.1016/j.ijbiomac.2020.11.052
92. Kistovich A., Pokazeev K., Chaplina T. Surface Contamination // Advanced Studies in Ocean Physics. Springer Oceanography. Springer, Cham, 2021. Р. 95–127. doi: 10.1007/978-3-030-72269-2_3
93. Ilinskiy A.V., Chernyakova O.N. To the question of bioremediation in relation to the agricultural land harnessed by oil hydrocarbons // Modern trends in the development of agrarian complex: materialy mezhdunarod. nauchno-praktich. konf. Solenoe Zaymishche, 2016. P. 92–97.
94. Al-Mebayedh H., Niu A., Lin C. Strategies for costeffective remediation of widespread oil-contaminated soils in Kuwait, an environmental legacy of the first Gulf War // J. Environ. Manage. 2023. V. 344. Article No. 118601. doi: 10.1016/j.jenvman.2023.118601
95. Maskalchuk L.N., Baklai A.A., Leont’eva T.G. Effect of the organic and mineral constituents of sapropels from Belarus Republic on the selective sorption of radiocesium // Radiochemistry. 2018. V. 60. P. 100–103. doi: 10.1134/S1066362218010150
Прикреплённые файлы:
<< Содержание номера << Архив
Дата последнего обновления: 11:24:48/27.03.25
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
 |
ИАА "Информ-Экология" |
|
 |
|
|
|
|
|
| |
|
|
|
|
|
 |
Министерство природных ресурсов Российской Федерации |
|
 |
|
|
|
|
|
| |
|
|
|
|
|
 |
Счётчик |
|
 |
|
|
|
|
|
| |
|