Эконовости О компании Издания и
проекты
Авторам Реклама Подписка Контакты Архив Полезные
ссылки
       
 
№4, 2020: Раздел 4.  Градостроительство, планировка сельских населенных пунктов

<< Содержание номера
<< Архив


[RUS] / [ENG]
Раздел 4.  Градостроительство, планировка сельских населенных пунктов
А.М. Репьева Автоматизация процессов архитектурного проектирования в градостроительстве в условиях урбанизации
Стр.114-118
https://doi.org/10.24412/1816-1863-2020-4-114-118


А.М. Репьева,  к.полит.н., доцент Национального исследовательского Московского государственного строительного университета (НИУ МГСУ),
[email protected], Москва, Россия
За последние десятилетия развитие технологии автоматизации и робототехники значительно увеличило потенциал производительности в строительной сфере, связанное с повышением уровня безопасности, качества конструкций и сокращения периода времени строительства. Однако существует много нерешенных проблем при разработке планирования автоматизации градостроительного процесса, начиная с этапа проектирования будущего объекта архитектуры. В связи с постоянным ростом спроса на внедрение инновационных технологий, ростом урбанизации возникает потребность в разработке новых технологических решений для оптимизации процессов градостроительства. Целью данной работы являлось получение усовершенствованной методологии автоматизации систем управления для процессов проектирования различных архитектурных моделей с использованием концепции объектно-ориентированного моделирования, обозначенные спецификацией нормативных требований и характеристик архитектурных элементов. На основе методологии организации иерархической структуры предложен алгоритм автоматизации процессов проектирования, в котором оптимизированы результаты отбора шаблонной модели, учета деталей стандартизации, выбора архитектурных форм и материалов и других аспектов.
Over the past decades advances in automation technology and robotics have significantly increased the productivity potential in the construction industry, associated with improved safety, structural quality and shorter construction times. However, there are many unsolved problems in the development of planning automation of the urban planning process, starting from the design stage of the future architectural object. Due to the constant growth in demand for the introduction of innovative technologies and the growth of urbanization, there is a need to develop new technological solutions to optimize the processes of urban planning. The aim of this work is to obtain an improved methodology for the automation of control systems for the design processes of various architectural models using the concept of object-oriented modeling, indicated by the specification of regulatory requirements and characteristics of architectural elements. Based on the methodology of organizing the hierarchical structure, an algorithm for the automation of design processes is proposed, in which the results of selecting a template model, taking into account the details of standardization, choosing architectural forms and materials, and other aspects are optimized.
Ключевые слова: автоматизация систем управления, иерархическая структура, архитектурная модель, алгоритм оптимизации.
Key words: automation of control systems, hierarchical structure, architectural model, optimization algorithm.

Библиографический список
1. Topchiy, D., Tokarskiy, A. Formation of Hierarchies in the System of Organization of State Construction Supervision in Case of Reorientation of Urban Areas // Материалы International Conference on Advances in Computing and Data Sciences. Springer, Singapore.– 2019. - С. 134-143.
2. Sobotka, A., Pacewicz, K. Building site organization with 3D technology in use //  Procedia engineering. – 2016. – 161. – С. 407-413.
3. Аrcaini, P., Mirandola, R., Riccobene, E., & Scandurra, P. A pattern-oriented design framework for self-adaptive software systems // Материалы IEEE International Conference on Software Architecture Companion (ICSA-C). – 2019.  - С. 166-169.
4. Bruckmann, T., Mattern, H., Spengler, A., Reichert, C., Malkwitz, A., & König, M.  Automated construction of masonry buildings using cable-driven parallel robots // Материалы International Symposium on Automation and Robotics in Construction. – 2016. - Т. 33. - С. 1.
5. That  M. T. T.,  Sadou, S.,  Oquendo, F. Using architectural patterns to define architectural decisions //  Материалы Joint Working IEEE/IFIP Conference on Software Architecture and European Conference on Software Architecture. -  2012. - С. 196 - 200.
6. Kassab M., Mazzara M., Lee J.,  Succi G. Software architectural patterns in practice: an empirical study // Innovations in Systems and Software Engineering. -  2018. -  14(4).  - С. 263-271.
7. Gyergyay B., Gomari S., Friedrich M., Sonnleitner J., Olstam J., Johansson F. Automation-ready framework for urban transport and road infrastructure planning // Transportation Research Procedia. -  2019. -  41. – С. 88-97.
8. Eilouti B. Concept evolution in architectural design: an octonary framework // Frontiers of architectural research. -  2018. - 7(2). – С. 180-196.
9. Nik-Bakht M., Panizza R. O., Hudon P., Chassain P. Y., Bashari M. Economy-energy trade off automation – A decision support system for building design development // Journal of Building Engineering. – 2020. - 101222.
10. Carter J., Shuman, V. Digital Infrastructure for National AV-Readiness // Материалы Automated Vehicles Symposium. Springer, Cham.– 2019. - С. 137-142.
11. Milakis D., Van Arem  B., Van Wee B. Policy and society related implications of automated driving: A review of literature and directions for future research // Journal of Intelligent Transportation Systems. – 2017. -  21(4). -  С. 324-348.
12. Bhatt J. G., Jani O. K., Bhatt C. B. Automation Based Smart Environment Resource Management in Smart Building of Smart City  //  Smart Environment for Smart Cities. Springer, Singapore. - 2020. -  С. 93-107.
13. Minoli D., Sohraby K., Occhiogrosso B. IoT considerations, requirements, and architectures for smart buildings  -  energy optimization and next-generation building management systems // IEEE Internet of Things Journal. -  2017. -  4(1). -  С. 269-283.
14. Neufert E., Neufert P. Architects' data. - John Wiley & Sons, 2012.
15. Neufert E. Arte de proyectar en arquitectura // Sociology. - 2006. Corpus ID: 189969114

AUTOMATIZATION OF ARCHITECTURAL DESIGN PROCESSES IN TOWN PLANNING  IN THE RAPID URBANIZATION CONDITIONS
A.M. Repeva, PhD (Politics),  assoc. professor  National research Moscow State university of  civil engineering (NRU MGSU),
[email protected], Москва, Россия

1. Topchiy, D., Tokarskiy, A. Formation of Hierarchies in the System of Organization of State Construction Supervision in Case of Reorientation of Urban Areas // Proceedings of International Conference on Advances in Computing and Data Sciences. Springer, Singapore.– 2019. - P. 134-143.
2. Sobotka, A., Pacewicz, K. Building site organization with 3D technology in use //  Procedia engineering. – 2016. – 161. – P. 407-413.
3. Аrcaini, P., Mirandola, R., Riccobene, E., & Scandurra, P. A pattern-oriented design framework for self-adaptive software systems // Proceedings of IEEE International Conference on Software Architecture Companion (ICSA-C). – 2019.  - P. 166-169.
4. Bruckmann, T., Mattern, H., Spengler, A., Reichert, C., Malkwitz, A., & König, M.  Automated construction of masonry buildings using cable-driven parallel robots // Proceedings of the International Symposium on Automation and Robotics in Construction. – 2016. - Vol. 33. - P. 1.
5. That  M. T. T.,  Sadou, S.,  Oquendo, F. Using architectural patterns to define architectural decisions //  Proceedings of Joint Working IEEE/IFIP Conference on Software Architecture and European Conference on Software Architecture. -  2012. - P. 196 - 200.
6. Kassab M., Mazzara M., Lee J.,  Succi G. Software architectural patterns in practice: an empirical study // Innovations in Systems and Software Engineering. -  2018. -  14(4).  - P. 263-271.
7. Gyergyay B., Gomari S., Friedrich M., Sonnleitner J., Olstam J., Johansson F. Automation-ready framework for urban transport and road infrastructure planning // Transportation Research Procedia. -  2019. -  41. – P. 88-97.
8. Eilouti B. Concept evolution in architectural design: an octonary framework // Frontiers of architectural research. -  2018. - 7(2). – P. 180-196.
9. Nik-Bakht M., Panizza R. O., Hudon P., Chassain P. Y., Bashari M. Economy-energy trade off automation – A decision support system for building design development // Journal of Building Engineering. – 2020. - 101222.
10. Carter J., Shuman, V. Digital Infrastructure for National AV-Readiness // Automated Vehicles Symposium. Springer, Cham.– 2019. - P. 137-142.
11. Milakis D., Van Arem  B., Van Wee B. Policy and society related implications of automated driving: A review of literature and directions for future research // Journal of Intelligent Transportation Systems. – 2017. -  21(4). -  P. 324-348.
12. Bhatt J. G., Jani O. K., Bhatt C. B. Automation Based Smart Environment Resource Management in Smart Building of Smart City  //  Smart Environment for Smart Cities. Springer, Singapore. - 2020. -  P. 93-107.
13. Minoli D., Sohraby K., Occhiogrosso B. IoT considerations, requirements, and architectures for smart buildings  -  energy optimization and next-generation building management systems // IEEE Internet of Things Journal. -  2017. -  4(1). -  P. 269-283.
14. Neufert E., Neufert P. Architects' data. - John Wiley & Sons, 2012.
15. Neufert E. Arte de proyectar en arquitectura // Sociology. - 2006. Corpus ID: 189969114.



Прикреплённые файлы:




<< Содержание номера
<< Архив

Дата последнего обновления: 18:58:40/24.02.24
   
     
       
 
ИАА "Информ-Экология"


   
     
 
       
 
Министерство природных ресурсов Российской Федерации


   
     
 
       
 
Счётчик


   
     
 
© Designed&Powered by 77mo.ru. 2007. All rights Reserved.