Эконовости О компании Издания и
проекты
Авторам Реклама Подписка Контакты Архив Полезные
ссылки
       
 
№4, 2024: Экологизация производства

<< Содержание номера
<< Архив


[RUS] / [ENG]
Экологизация производства
Комплексная переработка отходов катализаторов в композиционные материалы
С. Л. Фукс, к. т. н., доцент,
С. В. Девятерикова, к. т. н., доцент,
Вятский государственный университет,
610000, Россия, г. Киров, ул. Московская, д. 36 S. L. Fuchs ORCID: 0000-0002-9238-2944,
S. V. Devyaterikova ORCID: 0000-0003-1863-1209,
Vyatka State University,
36, Moscow St., Kirov, Russia, 610000
e-mail
[email protected]


Аннотация
Применение гетерогенных катализаторов в химических технологиях при получении водорода из природного газа приводит к образованию крупнотоннажных отходов. Причиной является физический износ гранул и изменение состава поверхности за счёт её коксования (образования углеродного слоя), приводящего к дезактивации катализатора. В связи с этим разработка технологий извлечения и очистки компонентов отработанных катализаторов является актуальной задачей. Целью данной работы явилось изучение возможности утилизации отходов катализатора ГИАП–8 с использованием продуктов их переработки в качестве исходных материалов при изготовлении композитов. Исследования показали, что извлечённый порошок оксида алюминия можно применять для получения композиционного материала «пластмасса–оксид алюминия», имеющего высокую ударную прочность, а хлоридные и сульфатные соли никеля – для никелирования металлов электрохимическим способом. Кроме того, оба извлечённых компонента можно использовать для получения композиционного электрохимического покрытия «никель–оксид алюминия» при оптимальном содержании дисперсной фазы в электролите, равном 25 г/дм3, и плотности катодного тока 2–3 А/дм2.
Abstract
The steam conversion of natural gas produces carbon monoxide and hydrogen. Hydrogen is used in the synthesis of ammonia and nitric acid. These products are used to obtain ammonium nitrate, which is used as a nitrogen fertilizer and a base substance for explosives. Natural gas is decomposed on the nickel catalyst. Due to the reactions of methane and carbon monoxide reduction to carbon, the catalyst granules are covered with a layer of carbon. Finely dispersed carbon penetrates the pores of the carrier and forms a layer on its surface that shields the catalyst granules and reduces its efficiency. The catalyst must be replaced. In Russia, the most common catalysts are nickel-based aluminum oxide catalysts. Attempts to restore the catalyst waste to its original characteristics do not yield positive result. In this regard, an urgent task is the development of technologies for the extraction and purification of components of spent catalysts. The object of the research was cylindrical granules of spent GIAP–8 catalyst, consisting of a porous carrier γ-Al2O3 with nickel oxide applied to its surface, covered with a layer of carbon. During the decomposition of GIAP–8 catalyst waste, three components were isolated: aluminum oxide, ultrafine carbon powder and nickel salts. Aluminum oxide was used to create plastic-based composites. The resulting plastic–aluminum oxide composite material has high impact strength, but is destroyed at a bending angle of 45–35 degrees. Therefore, its use can only be recommended for the manufacture of massive products. The nickel salts were used to prepare the plating electrolyte, aluminum oxide was used to obtain a coating of “nickel–aluminum oxide”. The maximum aluminum oxide content in the coating was achieved at 25 g/L dispersed phase concentration in the electrolyte. The optimal cathode current density was 2–3 A/dm2.

Ключевые слова
катализатор, отход, никель, оксид алюминия, композиционные материалы и покрытия
Keywords
catalyst, waste, nickel, aluminum oxide, composite materials and coatings




References
1. Fuchs S.L., Devyaterikova S.V. Recycling of waste from primary chemical power sources // Theoretical and Applied Ecology. 2022. No. 4. P. 119–123 (in Russian). doi: 10.25750/1995-4301-2022-4-119-123
2. Fuks S.L., Devyaterikova S.V. Utilization of industrial wastes for sorption of toxic gases // Theoretical and Applied Ecology. 2023. No. 4. P. 110–117 (in Russian). doi: 10.25750/1995-4301-2023-4-110-117
3. Demchenko V.G. Preliminary conversion of methane with recirculation gases // Modern science: research, ideas, results, technologies. 2010. No. 2 (4). P. 201–205 (in Russian).
4. Ammonia production / Ed. V.P. Semenov. Moskva: Chemistry, 1985. 368 p. (in Russian).
5. Atroshchenko V.I., Kargin S.I. Nitric acid technology. Moskva: State Scientific and Technical Publishing House of Chemical Literature, 1962. 515 p. (in Russian).
6. Chernyshev A.K., Levin B.V., Tutolukov A.V., Ogarkov A.A., Ilyin V.A. Ammonium nitrate: properties, production, application. Moskva: ZAO “Infohim”, 2009. 512 p. (in Russian).
7. Kolganov E.V., Sosnin V.A. Status and development prospects of explosives in Russia and abroad // Vzryvnoe delo. 2008. No. 100-57. P. 20–33 (in Russian).
8. Tarasov A.L., Kustov A.L., Kalenchuk A.N., Sokolovskii P.V., Bogdanov V.N., Gilyadov I.G. Steam conversion of methane on fechral // Russ. J. Phys. Chem. A. 2020. V. 94. No. 9. P. 1962–1964. doi: 10.31857/S0044453720090289
9. Krylov O.V. Heterogeneous catalysis. Moskva: Akademkniga, 2004. 680 p. (in Russian).
10. Krylov O.V. Carbon dioxide conversion of methane into synthesis gas // Rossiyskiy khimicheskiy zhurnal. 2000. V. 44. No. 1. P. 19–33 (in Russian).
11. Özdemir H., Faruk Örs zömer M.A., Ali Cürkaynak M.Preparation and characterization of Ni based catalysts for the catalyticpartial oxidation of methane: Effect of support basicity on H2/CO ratio and carbon deposition // Int. J. Hydrogen. 2010. V. 35. No. 22. P. 12147–12160. doi: 10.1016/j.ijhydene.2010.08.091
12. Dadahodzhaev A.T., Mamataliev N.N. Methods of nickel extraction from production waste and its application // Universum. Tehnicheskie nauki. 2019. No. 4 (61). Р. 27–32 (in Russian).
13. Dossumov K., Myltykbaeva L., Ergazieva G. Nickelcontaining catalysts for methane oxidation to synthesis gas // Chemical Bulletin of Kazakh National University. 2014. V. 76. No. 4. P. 24–28 (in Kazakh). doi: 10.15328/chemb_2014_424-28
14. Zhan S., Tian Y., Cui Y., Wu H., Wang Y., Ye S., Chen Y. Effect of process conditions on the synthesis of carbon nanotubes by catalytic decomposition of methane // HYPERLINK “https://www.sciencedirect.com/journal/china-particuology”China Particuology. 2007. HYPERLINK “https://www.sciencedirect.com/journal/chinaparticuology/vol/5/issue/3”V. 5. No. 3. P. 213–219. doi: 10.1016/j.cpart.2007.03.004
15. Kerber M.L. Polymer composite materials: structure, properties, technology. Sankt-Peterburg: TsOP Professiya, 2014. 592 p. (in Russian).
16. Nilov A.S., Galinskaya O.O., Krasnov V.I. Analysis of technological features manufacture of three-layer struc-tures with space filler made from composite materials with reactoplastic matrix // Aerospace Engineering and Technology. 2024. V. 2. No. 2. P. 24–51 (in Russian). doi: 10.52467/2949-401X-2024-2-2-24-51
17. Talalaeva G., Paznikova S. Modern composite materials: prospects and risks of application in the field of integrated security and civil defense // Civil Security Technology. 2023. V. 20. No. 1 (75). P. 107–114 (in Russian). doi: 10.54234/CST.19968493.2023. 20.1.75
18. Erdey-Grúz T. Transport phenomena in aqueous solutions. London: Adam Hilger Ltd., 1974. 512 p.
19. Saifullin R.S. Composite electrochemical coatings (development and results over 30 years) // Electrodeposition of metals and alloys / Ed. V.N. Kudryavtsev. Moskva: Izdatelstvo MKhTI im. D.I. Mendeleeva, 1991. P. 133–144 (in Russian).
20. Saifullin R.S. Combined electrochemical coatings and materials. Moskva: Khimiya, 1972. 167 p. (in Russian).



Прикреплённые файлы:




<< Содержание номера
<< Архив

Дата последнего обновления: 11:24:48/27.03.25
   
     
       
 
ИАА "Информ-Экология"


   
     
 
       
 
Министерство природных ресурсов Российской Федерации


   
     
 
       
 
Счётчик


   
     
 
© Designed&Powered by 77mo.ru. 2007. All rights Reserved.