|
|
|
|
|
№4, 2024: Экологизация производства |
<< Содержание номера << Архив
 [RUS] / [ENG]Экологизация производства Перспективность технологии плазменно-химической очистки воздуха от формальдегида и муравьиной кислоты в промышленности А. Е. Ефимов1, аспирант,
А. Г. Бубнов2, д. х. н., доцент,
Г. И. Гусев1, к. х. н., ст. преподаватель,
Г. Д. Овчинников1, магистрант,
1Ивановский государственный химико-технологический университет,
153000, Россия, г. Иваново, пр. Шереметевский, д. 7,
2Ивановскаяпожарно-спасательная академия ГПС МЧС России,
153040, Россия, г. Иваново, пр. Строителей, д. 33 A. E. Efimov1 ORCID: 0009-0004-7530-8832,
A. G. Bubnov2 ORCID: 0000-0002-7201-9339,
G. I. Gusev1 ORCID: 0000-0002-8528-3403,
G. D. Ovchinnikov1 ORCID: 0000-0002-5522-1834,
1Ivanovo State University of Chemistry and Technology,
7, Sheremetevsky avenue, Ivanovo, Russia, 153000,
2Ivanovo Fire and Rescue Academy of State Firefighting Service of Ministry
of Russian Federation for Civil Defense, Emergencies
and Elimination of Consequences of Natural Disasters,
33, Stroiteley avenue, Ivanovo, Russia, 153040
e-mail
[email protected]
Аннотация
Исследована эффективность плазменно-химической технологии очистки воздуха в сравнении с некоторыми технологиями подавления отходящих газов (адсорбция, катализ) при помощи апробированных подходов выбора систем обезвреживания летучих поллютантов: эколого-экономический, экспертный, иерархической процедуры оценивания и критерия относительной общей пользы. Так, эколого-экономический и экспертный подходы, а также критерий относительной общей пользы позволяют сравнить технологии на основе эксплуатационных затрат (техногенный риск, энергоэффективность, надёжность и стоимость производственных фондов). При этом иерархическая процедура оценивания, помимо перечисленных показателей, учитывает эргономику и устойчивость к внешнему воздействию. Показано, что плазменно-химическая технология очистки не является приоритетной при выборе систем обезвреживания отходящих газов от формальдегида, поскольку 3 из 4 подходов указывают на неэффективность рассматриваемой технологии относительно адсорбционного метода. При очистке воздуха от паров муравьиной кислоты плазменно-химическая технология в 2 из 4 случаев является настолько же эффективной, как и адсорбционный метод. Рассмотрена эффективность плазменно-химической, каталитической и адсорбционной технологий с точки зрения методики оценки «углеродного следа», позволяющей количественно исследовать эмиссию «парникового газа» не только на этапе эксплуатации оборудования, а также на стадиях производства, транспортировки и утилизации. Полученные значения показателя «углеродного следа» для низкотемпературной плазмы являются лучшими среди сопоставимых доступных технологий, т. к. суммарное количество выбросов CO2 при её применении сокращается на 80% (в среднем) за счёт того, что относительные общие затраты энергии ниже.
Abstract
The effectiveness of plasma-chemical air purification technology was studied in comparison with some technologies for suppressing waste gases (adsorption, catalysis). We use proven approaches (environmental-economic, expert, hierarchical evaluation procedure and the criterion of relative overall benefit) to selecting systems for neutralizing volatile pollutants. Thus, environmental-economic and expert approaches, as well as the criterion of relative overall benefit, make it possible to compare technologies based on operating costs (technological risk, energy efficiency, reliability and cost of production assets). At the same time, the hierarchical evaluation procedure, in addition to the listed indicators, takes into account ergonomics and resistance to external influences. It is shown that plasma-chemical cleaning technology is not a priority when choosing systems for neutralizing waste gases from formaldehyde, since 3 out of 4 approaches indicate the ineffectiveness of this technology relative to the adsorption method. When cleaning air from formic acid vapors, plasmachemical technology in 2 out of 4 cases is as effective as the adsorption method. The effectiveness of plasma-chemical, catalytic and adsorption technologies is considered from the point of view of the methodology for assessing the “carbon footprint”, which makes it possible to quantitatively study the emission of “greenhouse gas” not only at the stage of equipment operation, but also at the stages of production, transportation and disposal. However, the obtained carbon footprint values for low-temperature plasma are the best among comparable available technologies, because the total amount of CO2 emissions when using it is reduced by 80% (on average) due to the fact the relative total energy costs are lower.
Ключевые слова
летучие органические соединения, методы очистки, углеродный след
Keywords
volatile organic compounds, cleaning methods, carbon footprint
References
1. Efimov A.Е., Bubnov A.G. Air purification from formaldehyde by active barrier discharge particles // Russian Journal of Applied Ecology. 2023. No. 1. P. 38–44 (in Russian). doi: 10.24852/2411-7374.2023.1.38.44
2. ITS 22-2016 Treatment of emissions of harmful (polluting) substances into the atmospheric air during the production of products (goods), as well as during the performance of work and the provision of services at major events. Moskva: Byuro NDT, 2016. 211 p. (in Russian).
3. Pankratov A.N., Uchaeva I.M. Oxidation-reduction reactions in the environment. Moskva: Izdatelstvo “Pero”, 2020. 256 p. (in Russian).
4. ITD 47-2023 Treatment (handling) systems for wastewater and exhaust gases in the chemical industry. Moskva, 2023. 102 p. (in Russian).
5. Evsina E.M., Khomenko T.V., Zolotareva N.V. Mathematical modeling of evaluation and the choice of technical solutions in air purification systems // Engineering and Construction Bulletin of the Caspian Region. 2019. No. 4 (30). P. 135–140 (in Russian).
6. Evsina E.M., Shikulsky M.I. Intellectualization of the decision support system for the selection of methods and means of air purification of industrial enterprises // Engineering and Construction Bulletin of the Caspian Region. 2021. No. 1 (35). P. 66–69 (in Russian).
7. Berezyuk M.V., Rumyantseva A.V., Merzlikina Yu.B., Makarova D.N. Choice of the best available technologies: economic aspects // Vestnik UrFU. Seriya Ekonomika i upravlenie. 2014. No. 2. P. 109–121 (in Russian).
8. Berezin S.E., Bazhenov V.I., Chernenko A.V. Justification for the choice of technological equipment for wastewater treatment // Nailuchshie dostupnye tekhnologii vodosnabzheniya i vodootvedeniya. 2014. No. 2. P. 48–59 (in Russian).
9. STO MON 2.42-2018. “Green” standards in the nanoindustry methodology for assessing the carbon footprint
of the production of innovative products. Moskva, 2018. 43 p. (in Russian).
10. Begak M.V., Guseva T.V., Molchanova T.V., Averochkin E.M., Sagayduk V.L. Monitoring and reducing the carbon footprint of Russian water utilities. Methods for determining the carbon footprint of wastewater treatment facilities. Moskva: RKhTU im. D.I. Mendeleeva, 2013. 56 p. (in Russian).
11. Bykova Ya.P., Ermolenko B.V. Statement of the problem of choosing an effective technological scheme for
treating wastewater from oil refineries and constructing a mathematical model // Advances in Chemistry and Chemical Technology. 2007. V. 21. No. 12 (80). P. 7–12 (in Russian).
12. Decree of the Government of the Russian Federation of January 24. 2020. No. 39 “On the application of payment rates for negative environmental impact in 2020” [Internet resource] http://publication.pravo.gov.ru/Document/View/0001202001280014?index=1&rangeSize=1 (Accessed: 30.12.2022) (in Russian).
13. Decree of the Government of the Russian Federation of September 13, 2016 No. 913 (as amended on January 24, 2020) “On the rates of payment for the negative impact on the environment and additional coefficients” [Internet resource] https://docs.cntd.ru/document/420375216?ysclid=lcovonutc9361188670 (Accessed: 30.12.2022) (in Russian).
14. Evstropov N.A. Environmental assessment of the quality level of industrial products and technological processes: guidelines. Moskva: Akademiya standartizatsii, metrologii i sertifikatsii, 2001. 44 p. (in Russian).
15. Saati T.L. The Analytic Hierarchy Process. Moskva: Radio i svyaz, 1993. 278 p. (in Russian).
16. Saraev I.V., Bubnov A.G. Choosing personal protective equipment for firefighter respiratory and eye protection based on relative total benefit // Civil Security Technology. 2017. V. 14. No. 1 (51). P. 71–79 (in Russian).
17. Bubnov A.G., Grinevich V.I., Gushchin A.A., Plastinina N.A. Metodology of method choice for water purification from organic substances applying ecological risk parameters // Izvestiya vysshikh uchebnykh zavedeniy. Seriya: Khimiya i khimicheskaya tekhnologiya. 2007. V. 50. No. 8. P. 89–93 (in Russian).
18. Dynamics of development of carbon emission factors for electricity generation in Russia. Study of the baseline level of carbon emissions in Russia: final report [Internet resource] https://www.ebrd.com/downloads/sector/eecc/Baseline_Study_Russia_Final_Russian.pdf (Accessed: 25.04.2022) (in Russian).
19. Ministry of Natural Resources and Ecology of the Russian Federation [Internet resource] http://www.mnr.gov.ru (Accessed: 25.04.2022) (in Russian).
20. Sedykh V.A., Kurolap S.A., Belyaeva L.N., Mazurov G.I., Kozlov A.T., Zakusilov V.P. Formaldehyde air pollution and risk assessment of carcinogenic effects // Theoretical and Applied Ecology. 2023. No. 2. P. 73–79
(in Russian). doi: 10.25750/1995-4301-2023-2-073-079
21. Order of the Ministry of Natural Resources and Ecology of the Russian Federation dated December 29, 2020 No. 1116 “On approval of the regulatory document in the field of environmental protection “Technological indicators of the best available technologies for the production of basic organic chemicals” [Internet resource] http://publication.pravo.gov.ru/Document/View/0001202101290016?ysclid=ls8wwxvr6c782648591 (Accessed: 04.02. 2024) (in Russian).
22. Kakareka S.V., Ashurko Yu.G. Peculiarities of formaldehyde into atmospheric air emission from manufacture and use of wood processing production // Prirodopolzovanie. 2011. No. 19. P. 31–36 (in Russian).
23. Seredkin K.A., Dolgoshchelova M.I., Korobov V.B., Comparison of methods for expert evaluation of factors in terms of ecological-geographical value of environmental impact assessment of transport infrastructure of Arkhangelsk region // Arctic Environmental Research. 2014. No. 4. P. 43–52 (in Russian).
24. Uzhga-Rebrov O.I., Grabusts P.S. Comparative analysis of two approaches to modeling and accounting for risks in decision making // Problemy Analiza Riska. 2012. No. 2. P. 8–23 (in Russian).
25. Paris agreement: Status of ratification / United Nations framework convention on climate change (UNFCCC) [Internet resource] http://unfccc.int/paris_agreement/items/9444.php (Accessed: 30.12.2022).
26. Syrcina N.V., Kantor G.Ya., Pugach V.N., Ashikhmina T.Ya. Contribution of carbon dioxide and water to the greenhouse effect // Theoretical and Applied Ecology. 2021. No. 4. P. 218–223 (in Russian). doi: 10.25750/1995-4301-2021-4-218-223
27. Gordeeva E.M., Pugach V.N. The Paris Agreement and “Climate neutrality”: the role for “Agriculture, forestry and other land use” sector // Theoretical and Applied Ecology. 2021. No. 3. P. 219–227 (in Russian). doi: 10.25750/1995-4301-2021-3-219-227
28. Kantor G.Ya., Syrcina N.V. Alternative assessment of methane’s contribution to the greenhouse effect // Theoretical and Applied Ecology. 2023. No. 3. P. 197–207 (in Russian). doi: 10.25750/1995-4301-2023-3-197-207
29. Zhu X., Gao X., Qin R., Zeng Y., Qu R., Zheng C., Tu X. Plasma-catalytic removal of formaldehyde over Cu–Ce catalysts in a dielectric barrier discharge reactor // Appl. Catal., B. 2015. V. 170–171. P. 293–300. doi:10.1016/j.apcatb.2015.01.032
30. Kim H.H., Ogata A., Futamura S. Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds // J. Phys. D: Appl. Phys. 2005. V. 38. No. 8. Article No. 1292. doi:10.1088/0022-3727/38/8/029
Прикреплённые файлы:
<< Содержание номера << Архив
Дата последнего обновления: 11:24:48/27.03.25
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
 |
ИАА "Информ-Экология" |
|
 |
|
|
|
|
|
| |
|
|
|
|
|
 |
Министерство природных ресурсов Российской Федерации |
|
 |
|
|
|
|
|
| |
|
|
|
|
|
 |
Счётчик |
|
 |
|
|
|
|
|
| |
|