|
|
|
|
|
№4, 2024: Ремедиация и рекультивация |
<< Содержание номера << Архив
 [RUS] / [ENG]Ремедиация и рекультивация Фиторекультивация техногенных ландшафтов с использованием растений рода Salix L. Е. Н. Теребова1, к. б. н., доцент,
Н. В. Орешникова2, к. б. н., доцент,
М. А. Павлова1, аспирант,
1Петрозаводский государственный университет,
185910, Россия, г. Петрозаводск, ул. Ленина, д. 33,
2 Московский государственный университет им. М.В. Ломоносова,
119991, Россия, г. Москва, ул. Ленинские горы, д. 1 E. N. Terebova1 ORCID: 0000-0001-6556-9132,
N. V. Oreshnikova2 ORCID: 0009-0006-0436-6538,
M. A. Pavlova1ORCID: 0000-0003-2326-4044,
1Petrozavodsk State University,
33, Lenin St., Petrozavodsk, Russia, 185910,
2Moscow State University,
1, Leninskie Gory St., Moscow, Russia, 119991
e-mail
[email protected]
Аннотация
Исследован фиторемедиационный потенциал видов рода Salix L. (Ивы) при рекультивации промышленной свалки комбината ОАО «Карельский окатыш», на территории которой в 2014 г. была создана плантация с использованием 7 видов рода Salix. Техногенный грунт ландшафта был загрязнён железом до 56 г/кг и беден основными макро- и микроэлементами. В течение 4 лет проводился анализ биоморфологических (рост, масса органов), физиологических показателей (содержание фотосинтетических пигментов, состав клеточной стенки листа) и накопления металлов (коэффициент биологического поглощения металлов (КБП)) растений ивы. Установлено, что максимальную приживаемость после посадки имели виды S. schwerinii (93%), S. phylicifolia (80%), S. viminalis(70%). Содержание фотосинтетических пигментов и специальный листовой индекс (SLA) листа S. phylicifolia, и S. shcwerinii позволили оценить фотосинтетическую функцию растений, как оптимальную. Средний ряд накопления металлов (КБП) целым растением видов рода Salix следующий: Zn (31,92) > Cd (11,83) > Mn (5,10) > Pb (4,64) >Cu (4,40) > Cr (1,47) > Co (1,45) > Li (0,41) > Fe (0,17). За счёт высокой ионообменной способности клеточной стенки листа ив (1120–2050 мкмоль/г сух. кл. ст.) металлы могут связываться в организме растений. Ивы и в дальнейшем будут выполнять функцию облесения техногенной территории, создавать условия для развития продуктивного лесного фитоценоза.
Abstract
The phytoremediation potential of species of the genus Salix L. (Willow) was studied during the remediation of the industrial landfill of the OJSC “Karelsky Okatysh”. A plantation was created at this landfill in 2014. 7 species of the genus Salix were used for this purpose. The technogenic soil of the landscape was contaminated with iron up to 56 g/kg and was poor in basic macro- and microelements. Biomorphological (growth, organ weight) and physiological indicators (photosynthetic pigments content, leaf cell wall composition), as well as metal accumulation (biological absorption coefficient of metals (BAC)), were analyzed for willow plants during 4 years. We found that S. schwerinii (93%), S. phylicifolia (80%), and S. viminalis (70%) had the maximum survival rate after planting. The photosynthetic pigments content and the special leaf index (SLA) of S. phylicifolia and S. shcwerinii leaves allowed us to evaluate the photosynthetic function of plants as optimal in conditions of soil iron contamination and a lack of macro-microelements. The average series of metal accumulation by a whole plant in species of the genus Salix is as follows: Zn (31.92) > Cd (11.83) > Mn (5.10) > Pb (4.64) > Cu (4.40) > Cr (1. 47) > Co (1.45) > Li (0.41) > Fe (0.17). Due to the high ion exchange capacity of the willow leaf tissues cell wall (1120–2050 µmol/g of dry cell wall weight), metals can µind in the plant µody. Phenolic and pectin suµstances dominate in the structure of the cell wall of willow leaves. Willows will continue to perform the function of afforestation of technogenic territory and create conditions for the development of a productive forest phytocenosis.
Ключевые слова
фиторекультивация, Salix, металлы, железорудное производство, клеточная стенка, рост, фотосинтетические пигменты, коэффициент биологического поглощения
Keywords
phytoremediation, Salix, metals, iron ore production, cell wall, growth, photosynthetic pigments, biological absorption coefficient
References
1. Shen X., Dai M., Yang J., Sun L., Tan X., Peng C., Ali I., Naz I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges // Chemosphere. 2022. V. 291. Pt. 3. Article No. 132979. doi: 10.1016/j.chemosphere.2021.132979
2. Goncharova N.V. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants // Ekologicheskiy vestnik. 2010. No. 4. P. 5–13 (in Russian).
3. Gerasimova M.I., Stroganova M.N., Mozharova N.V., Prokofieva T.V. Anthropogenic soils: genesis, geography, reclamation. Smolensk: Oikumena, 2003. 268 p. (in Russian).
4. Rodkin O.I., Tsyµulko N.N. Prospects for using the phytoremediation method for deactivation of territories contaminated with radionuclides // Journal of the Belarusian State University. Ecology. 2023. No. 1. P. 42–50 (in Russian). doi:10.46646/2521-683X/2023-1-42-50
5. Nedoseko O.I., Viktorov V.P. Life forms of Salix L. genus types in Russia // Russian Journal of Ecosystem Ecology. 2018. V. 3 (2). P. 1–15 (in Russian). doi: 10.21685/2500-0578-2018-2-5
6. Kuzovkina Y.A., Volk T.A. The characterization of willow (Salix L.) varieties for use in ecological engineering applications: Co-ordination of structure, function and autecology // Ecol. Eng. 2009. V. 35. No. 8. P. 1178–1189. doi: 10.1016/j.ecoleng.2009.03.010
7. Wikµerg J., Ögren E. Interrelationships µetween water use and growth traits in µiomass-producing willows // Trees. 2004. V. 18. P. 70–76. doi: 10.1007/s00468-003-0282-y
8. Kulagin A. Yu., Ishµirdin A. R., Tagirova O. V. Adaptive variaµility of willow white (Salix alba L.) in the conditions of technogenic pollution of the environment (Southern Ural region) // Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Khimiya. Biologiya. Ekologiya. 2020. V. 20. No. 1. P. 90–101 (in Russian). doi: 10.18500/1816-9775-2020-20-1-90-101
9. Urazgildin R.V., Kulagin A.Yu. Structural and functional responses of woody plants to anthropogenic environmental changes: Damage, adaptations and strategies. Part 2. Effects on physiological functions // Biosfera. 2021. V. 13. No. 3. P. 101–119 (in Russian). doi: 10.24855/µiosfera.v13i3.579
10. Kayµeyaynen E.L., Pelkonen P. Optimization of photosynthesis and transpiration in unseparated willow leaves on rapid regeneration plantations // Fiziologiya rasteniy. 2007. V. 54. No. 3. P. 350–355 (in Russian).
11. State report on the state of the environment of the Repuµlic of Karelia in 2020 / Eds. A.N. Gromtsev, O.L. Kuznetsov, A.E. Kurilo, E.V. Vedentsova. Petrozavodsk, 2021. 277 p. (in Russian).
12. Mohsin M., Kuittinen S., Salam M.M.A., Peräniemi S., Laine S., Pulkkinen P., Kaipiainen E., Vepsäläinen J., Pappinen A. Chelate-assisted phytoextraction: Growth and ecophysiological responses µy Salix schwerinii E.L Wolf grown in artificially polluted soils // J. Geochem. Explor. 2019. V. 205. Article No. 106335. doi: 10.1016/j.gexplo.2019.106335
13. Tereµova E.N., Oreshnikova N.V., Pavlova M.A., Staroduµtseva A.A. Application of Scots pine µark and shungite chips for growing oats (Avena sativa L.) in protected ground // Forestry Bulletin. 2024. V. 28. No. 2. P. 55–69 (in Russian). doi: 10.18698/2542-1468-2024-2-55-69
14. Meychik N.R., Yermakov I.P., Khonarmand S.D., Nikolaeva Y.I. Ion-exchange properties of cell walls in chickpea cultivars with different sensitivities to salinity // Russ. J. Plant Physiol. 2010. V. 57. P. 620–630. doi: 10.1134/S1021443710050043
15. Duµrovina I.A. Changes in the content of total carµon, nitrogen and phosphorus in µoreal soils of the Repuµlic of Karelia when used in agriculture // Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya. 2018. No. 41. P. 27–41 (in Russian). doi: 10.17223/19988591/41/2
16. Fedorets N.G., Bakhmet O.N., Medvedeva M.V., Akhmetova G.V., Novikov S.G., Tkachenko Yu.N., Solodovnikov A.N.Heavy metals in soils of Karelia. Petrozavodsk: Karelskiy nauchnyy tsentr RAN, 2015. 222 p. (in Russian).
17. Gąsecka M.G., Mleczek M., Drzewiceka K., Magdziak Z., Rissmann I., Chadzinikolau T., Golinski P. Physiological and morphological changes in Salix viminalis L. as a result of plant exposure to copper // J. Environ. Sci. Health A Tox. Hazard. Suµst. Environ. Eng. 2012. V. 47. No. 4. P. 548–557. doi: 10.1080/10934529.2012.650557
18. Ivanova N.A., Kostyuchenko R.N. Ecological and physiological mechanisms of adaptation of some species of willows in various haµitat conditions on the territory of the Middle Oµ region // Nizhnevartovsk: Izdatelstvo Nizhnevartovskogo gumanitarnogo universiteta, 2011. 163 p. (in Russian).
19. Kostyuchenko R.N. Ecological and physiological mechanisms of adaptation of some willow species in different haµitat conditions on the territory of the Middle Oµ region. Nizhnevartovsk: Izdatelstvo Nizhnevartovskogo gumanitarnogo universiteta, 2011. 163 p. (in Russian).
20. Sassner P., Mårtensson C.G., Galµe M., Zacchi G. Steam pretreatment of H2SO4-impregnated Salix for the production of µioethanol // Bioresour. Technol. 2008. V. 99. No. 1. P. 137–145. doi: 10.1016/j.µiortech.2006.11.039
21. Tereµova E.N., Markovskaya E.F., Androsova V.I. Cell wall functional activity and metal accumulation of halophytic plant species Plantago maritima and Triglochin maritima on the White Sea littoral zone (NW Russia) // Czech Polar Reports. 2020. V. 10. No. 2. P. 169–188. doi: 10.5817/CPR2020-2-14
22. Krzesłowska M. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy // Acta Physiol. Plant. 2011. V. 33. P. 35–51. doi: 10.1007/s11738-010-0581-z
23. Kulµat K. The role of phenolic compounds in plant resistance // Biotechnol. Food Sci. 2016. V. 80. No. 2. P. 97–108.
Прикреплённые файлы:
<< Содержание номера << Архив
Дата последнего обновления: 11:24:48/27.03.25
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
 |
ИАА "Информ-Экология" |
|
 |
|
|
|
|
|
| |
|
|
|
|
|
 |
Министерство природных ресурсов Российской Федерации |
|
 |
|
|
|
|
|
| |
|
|
|
|
|
 |
Счётчик |
|
 |
|
|
|
|
|
| |
|