|
|
|
|
|
№4, 2024: Социальная экология |
<< Содержание номера << Архив
 [RUS] / [ENG]Социальная экология Пищевые отходы и их валоризация в продукты с добавленной стоимостью (обзор международного опыта азиатских стран) О. В. Байкова, д. ф. н., зав. кафедрой,
В. Н. Пугач, к. э. н., ректор,
А. В. Казаков, к. ф. н., доцент,
Вятский государственный университет,
610000, Россия, г. Киров, ул. Московская, д. 36 O. V. Baykova ORCID: 0000-0002-4859-8553,
V. N. Pugach ORCID: 0000-0003-1220-4062,
A. V. Kazakov ORCID: 0000-0001-5522-4624,
Vyatka State University,
36, Moskovskaya St., Kirov, Russia, 610000
e-mail
[email protected], [email protected]
Аннотация
С изменением образа жизни и быстрой урбанизацией населения планеты увеличивается количество пищевых отходов из различных промышленных, сельскохозяйственных и бытовых источников. Пищевые отходы богаты органическими веществами, поэтому традиционные подходы к их захоронению на полигонах твёрдых коммунальных отходов и сжиганию могут привести к серьёзным последствиям для окружающей среды и здоровья человека. Использование биологических методов для обработки таких отходов предлагает устойчивый способ их валоризации. Будучи богатыми питательными веществами, пищевые отходы могут служить субстратом для роста микроорганизмов и последующего производства различных продуктов с добавленной стоимостью. В статье представлен обзор международных исследований сельскохозяйственного сектора Индии и Китая по валоризации отходов на основе ферментации для производства различных биопродуктов с добавленной стоимостью. Необходимо отметить, что данные страны выбраны не случайно, они являются передовыми странами Юго-Восточной Азии в области утилизации органических соединений с пользой для экономики и окружающей среды. Для достижения поставленной цели нами задействован обзорно-аналитический метод, который даёт возможность наглядно проиллюстрировать, как на основе применения валоризации можно выгодно использовать пищевые отходы в качестве сырья или ресурсов для производства новых продуктов, в том числе биотоплива, электроэнергии, биосурфактантов и т. д. В рамках проводимой в настоящее время работы обеспечивается дальнейшее обобщение данных о тематических исследованиях сельскохозяйственного сектора Индии и Китая, касающихся успешных мероприятий по перепрофилированию пищевых отходов для производства новых продуктов.
Abstract
With the changing lifestyle and rapid urbanization of the world’s population, the amount of food waste from various industrial, agricultural and household sources is increasing. Food waste is rich in organic substances, so traditional approaches to its disposal in municipal solid waste landfills and incineration can lead to serious consequences for the environment and human health. The use of biological methods for the treatment of such waste offers a sustainable way to valorize them. Being rich in nutrients, food waste can serve as a substrate for the growth of microorganisms and the subsequent production of various value-added products. The article provides an overview of international research in the agricultural sector of India and China on the valorization of fermentation-based waste for the production of various value-added bioproducts. It should be noted that these countries were not chosen by chance, they are the leading countries in Southeast Asia in the field of recycling organic compounds with benefits for the economy and the environment. To achieve this goal, we have used a review and analytical method, which makes it possible to visually illustrate how, based on the use of valorization, food waste can be advantageously used as raw materials or resources for the production of new products, including biofuels, electricity, biosurfactants, etc. As part of the ongoing work, data on case studies of the agricultural sector in India and China on successful repurposing of food waste for the production of new products is being further summarized.
Ключевые слова
утилизация отходов, переработка отходов, валоризация, пищевые отходы, отходы домохозяйств, сельскохозяйственные отходы, Индия, Китай
Keywords
waste disposal, waste recycling, valorization, food waste, household waste, agricultural waste, India, China
References
1. Bernstad A., la Cour Jansen J. Review of comparative LCAs of food waste management systems – current status and potential improvements // Waste Manag. 2012. V. 32. No. 12. P. 2439–2455. doi: 10.1016/j.wasman.2012.07.023
2. Hebrok M., Boks C. Household food waste: drivers and potential intervention points for design – an extensive review // J. Clean. Prod. 2017. V. 151. No. 3. P. 380–392. doi: 10.1016/j.jclepro.2017.03.069
3. Schanes K., Dobernig K., Gözet B. Food waste matters – a systematic review of household food waste practices and their policy implications // J. Clean. Prod. 2018. V. 182. P. 978–991. doi: 10.1016/j.jclepro.2018.02.030
4. Xue L., Liu G., Parfitt J., Liu X., van Herpen E., Stenmarck Å., O’Connor C., Östergren K., Cheng S. Missing food, missing data? A critical review of global food losses and food waste data // Environ. Sci. Technol. 2017. V. 51. No. 12. P. 6618–6633. doi: 10.1021/acs.est.7b00401
5. Li Y., Wang L.E., Liu G., Cheng S. Rural household food waste characteristics and driving factors in China // Resour. Conserv. Recycl. 2021. V. 164. No. 3. Article No. 105209. doi: 10.1016/j.resconrec.2020.105209
6. Shamtsyan M.M., Kolesnikov B.A., Klepikov A.A., Kasyan O.V. Biotechnological processing of agricultural
and food industry waste // Bulletin of the Academy of Sciences of the USSR Division of Chemical Science. 2011. V. 55. No. 1. P. 17–25 (in Russian).
7. Gustavsson J., Cederberg C., Sonesson U., van Otterdijk R., Meybeck A. Global food losses and food waste: Extent, causes and prevention. Rome: FAO, 2011. 29 p.
8. Kummu M., de Moel H., Porkka M., Siebert S., Varis O., Ward P.J. Lost food wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use // Sci. Total Environ. 2012. V. 438. P. 477–489. doi: 10.1016/j.scitotenv.2012.08.092
9. Mak T.M.W., Xiong X., Tsang D.C.W., Yu I.K.M., Poon C.S. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities // Bioresour. Technol. 2020. V. 297. Article No. 122497. doi: 10.1016/j.biortech.2019.122497
10. Karthikeyan O.P., Trably E., Mehariya S., Bernet N., Wong J.W., Carrere H. Pretreatmen of food waste for methane and hydrogen recovery: a review // Bioresource Technology. 2018. V. 249. P. 1025–1039. doi: 10.1016/j.biortech.2017.09.105
11. Paritosh K., Kushwaha S.K., Yadav M., Pareek N., Chawade A., Vivekanand V. Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling // Biomed Res. Int. 2017. V. 2017. Article No. 2370927. doi: 10.1155/2017/2370927
12. Uckun Kiran E., Trzcinski A.P., Ng W.J., Liu Y. Bioconversion of food waste to energy: A review // Fuel. 2014. V. 134. P. 389–399. doi: 10.1016/j.fuel.2014.05.074
13. Tsang Y.F., Kumar V., Samadar P., Yang Y., Lee J., Ok Y.S., Song H., Kim K.H., Kwon E.E., Jeo Y.J. Production of bioplastic through food waste valorization // Environ. Int. 2019. V. 127. P. 625–644. doi: 10.1016/j.envint.2019.03.076
14. Recycled resources [Internet resource] https://www.kirovreg.ru/econom/Invest2/invclimate/invpotential/recycled_resources.php?ysclid=lu9t4i1iep578743265 (Accessed: 27.03.2024).
15. Uralchem Innovation launches Russia's first pea protein production facility [Internet resource] https://www.uralchem.ru/press/news/item28603/# (Accessed: 28.03.2024).
16. Papageorgiou M., Skendi A. Introduction to cereal processing and by-products // Sustainable recovery and reutilization of cereal processing by-products / Ed. C.M. Galanakis. Elsevier, 2018. P. 1–25. doi: 10.1016/B978-0-08-102162-0.00001-0
17. Anal A.K. Food Processing By-Products and their Utilization: Introduction / Food Processing By-Products and their Utilization. London: John Wiley & Sons Ltd., 2017. P. 1–10. doi: 10.1002/9781118432921.ch1
18. Parate V.R., Talib M.I. Study of metal adsorbent prepared from Tur Dal (Cajanus cajan) Husk: A value addition to agro-waste // IOSR Journal of Environmental Science, Toxicology and Food Technology. 2014. V. 8. No. 9. P. 43–54. doi: 10.9790/2402-08934354
19. Kumar S., Sangwan P., Dhankhar R. Mor V., Bidra S. Utilization of rice husk and their ash: A review // Res. J. Chem. Environ. Sci. 2013. V. 1. No. 5. P. 126–129.
20. Kumar A., Kumar D., George N., Sharma P., Gupta N. A process for complete biodegradation of shrimp waste by a novel marine isolate Paenibacillus sp. AD with simultaneous production of chitinase and chitin oligosaccharides // Int. J. Biol. Macromol. 2018. V. 109. P. 263–272. doi: 10.1016/j.ijbiomac.2017.12.024
21. Dede O.H., Ozdemir S. Development of nutrientrich growing media with hazelnut husk and municipal sewage sludge // Environ. Technol. 2018. V. 39. No. 17. P. 2223–2230. doi: 10.1080/09593330.2017.1352038
22. Tan L., Sun Z., Zhang W., Tang Y., Morimura S., Kida K. Production of bio-fuel ethanol from distilled grain waste eluted from Chinese spirit making process // Bioprocess Biosyst. Eng. 2014. V. 37. No. 10. P. 2031–2038. doi: 10.1007/s00449-014-1178-5
23. Ji C., Kong C.X., Mei Z.L., Li J. A review of the anaerobic digestion of fruit and vegetable waste // Appl. Biochem. Biotechnol. 2017. V. 183. No 3. P. 906–922. doi: 10.1007/s12010-017-2472-x
24. Panda S.K., Mishra S.S., Kayitesi E., Ray R.C. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes // Environ. Res. 2016. V. 146. P. 161–172. doi: 10.1016/j.envres.2015.12.035
25. Dessie W., Zhang W., Xin F., Dong W., Zhang M., Ma J., Jiang M. Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation // Bioresour. Technol. 2018. V. 247. P. 1177–1180. doi: 10.1016/j.biortech.2017.08.171
26. Díaz A.I., Laca A., Laca A., Díaz M. Treatment of supermarket vegetable wastes to be used as alternative substrates in bioprocesses // Waste Manag. 2017. V. 67. P. 59–66. doi: 10.1016/j.wasman.2017.05.018
27. Schieber A. Side streams of plant food processing as a source of valuable compounds: Selected examples // Annu. Rev. Food Sci. Technol. 2017. V. 8. No. 1. P. 97–112. doi: 10.1146/annurev-food-030216-030135
28. Sabu A., Sarita S., Pandey A., Bogar B., Szakacs G., Soccol C.R. Solid-state fermentation for production of phytase by Rhizopus oligosporus // Appl. Biochem. Biotechnol. 2002. V. 102–103. No. 1–6. P. 251–260. doi: 10.1385/abab:102-103:1-6:251
29. Pandey A., Soccol C.R. Economic utilization of crop residues for value addition: A futuristic approach // J. Sci. Ind. Res. 2000. V. 59. P. 12–22.
30. Benjamin S., Pandey A. Coconut cake – a potent substrate for the production of lipase by Candida rugosa in
solid-state fermentation // Acta Biotechnol. 1997. V. 17. No. 3. P. 241–251. doi: 10.1002/abio.370170308
31. Karmee S.K. Liquid biofuels from food waste: Current trends, prospect and limitation // Renewable Sustainable Energy Rev. 2016. V. 53. No. 7. P. 945–953. doi: 10.1016/j.rser.2015.09.041
32. Wu Y., Ma H., Zheng M., Wang K. Lactic acid production from acidogenic fermentation of fruit and vegetable wastes // Bioresour. Technol. 2015. V. 191. P. 53–58. doi: 10.1016/j.biortech.2015.04.100
33. Mahboubi A., Ferreira J.A., Taherzadeh M.J, Lennartsson P.R. Value-added products from dairy waste using edible fungi // Waste Manag. 2017. V. 59. Article No. 518. doi: 10.1016/j.wasman.2016.11.017
34. Parashar A., Jin Y., Mason B., Chae M., Bressler D.C. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry // J. Dairy Sci. 2016. V. 99. No. 3. P. 1859–1867. doi: 10.3168/jds.2015-10059
35. Singh N.B., Singh R., Imam M.M. Waste water management in dairy industry: pollution abatement and preventive attitudes // Int. J. Sci. Environ. Technol. 2014. V. 3. No. 2. P. 672–683.
36. Kushwaha J.P., Srivastava V.C., Mall I.D. An overview of various technologies for the treatment of dairy wastewaters // Crit. Rev. Food Sci. Nutr. 2011. V. 51. No. 5. P. 442–452. doi: 10.1080/10408391003663879
37. Fewtrell L. Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion // Environ. Health Perspect. 2004. V. 112. No. 14. P. 1371–1374. doi: 10.1289/ehp.7216
38. Dias T., Fragoso R., Duarte E. Anaerobic codigestion of dairy cattle manure and pear waste // Bioresour. Technol. 2014. V. 164. P. 420–423. doi: 10.1016/j.biortech.2014.04.110
39. Lappa I.K., Papadaki A., Kachrimanidou V., Terpou A., Koulougliotis D., Eriotou E., Kopsahelis N. Cheese whey processing: Integrated biorefinery concepts and emerging food applications // Foods. 2019. V. 8. No. 8. Article No. 347. doi: 10.3390/foods8080347
40. Okino-Delgado C.H., Prado D.Z.D., Facanali R., Marques M.M.O., Nascimento A.S., da Costa Fernandes C.J., Zambuzzi W.F., Fleuri L.F. Bioremediation of cooking oil waste using lipases from wastes // PloS One. 2017. V. 12. No. 10. Article No. 0186246. doi: 10.1371/journal.pone.0186246
41. Chang F.C., Tsai M.J., Ko C.H. Agricultural waste derived fuel from oil meal and waste cooking oil // Environ. Sci. Pollut. Res. 2018. V. 25. No. 6. P. 5223–5230. doi: 10.1007/s11356-017-9119-x
42. Henkel M., Müller M.M., Kügler J.H., Lovaglio R.B., Contiero J., Syldatk C., Hausmann R. Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production // Process Biochem. 2012. V. 47. No. 8. P. 1207–1219. doi: 10.1016/j.procbio.2012.04.018
43. Chen C., Sun N., Li D., Long S., Tang X., Xiao G., Wang L. Optimization and characterization of biosurfactant production from kitchen waste oil using Pseudomonas aeruginosa // Environ. Sci. Pollut. Res. Int. 2018. V. 25. No. 15. P. 14934–14943. doi: 10.1007/s11356-018-1691-1
44. Hussain Sherazi S.T., Mahesar S.A., Sirajuddin. Vegetable oil deodorizer distillate: A rich source of the natural bioactive components // J. Oleo Sci. 2016. V. 65. No. 12. P. 957–966. doi: 10.5650/jos.ess16125
45. Ning Z., Zhang H., Li W., Zhang R., Liu G., Chen C. Anaerobic digestion of lipid-rich swine slaughterhouse waste: Methane production performance, long-chain fatty acids profile and predominant microorganisms // Bioresour. Technol. 2018. V. 269. P. 426–433. doi: 10.1016/j.biortech.2018.08.001
46. Adhikari B., Chae M., Bressler D. Utilization of slaughterhouse waste in value-added applications: Recent advances in the development of wood adhesives // Polymers. 2018. V. 10. No. 2. Article No. 176. doi: 10.3390/polym10020176
47. Yaakob M.A., Mohamed R.M.S.R., Al-Gheethi A., Tiey A., Kassim A.H.M. Optimising of Scenedesmus sp. biomass production in chicken slaughterhouse wastewater using response surface methodology and potential utilisation as fish feeds // Environ. Sci. Pollut. Res. Int. 2019. V. 26. No. 12. P. 12089–12108. doi: 10.1007/s11356-019-04633-0
48. Ashayerizadeh O., Dastar B., Samadi F., Khomeiri M., Yamchi A., Zerehdaran S. Study on the chemical and microbial composition and probiotic characteristics of dominant lactic acid bacteria in fermented poultry slaugh-terhouse waste // Waste Manag. 2017. V. 65. P. 178–185. doi: 10.1016/j.wasman.2017.04.017
49. Marques R.V., Paz M.F.D., Duval E.H., Corrêa L.B., Corrêa É.K. Staphylococcus xylosus fermentation of pork fatty waste: raw material for biodiesel production // Braz. J. Microbiol. 2016. V. 47. No. 3. P. 675–679. doi: 10.1016/j.bjm.2016.04.018
50. Zhao J., Liu Y., Wang D., Chen F., Li X., Zeng G., Yang Q. Potential impact of salinity on methane production from food waste anaerobic digestion // Waste Manag. 2017. V. 67. P. 308–314. doi: 10.1016/j.wasman.2017.05.016
51. Li P., Zeng Y., Xie Y., Li X., Kang Y., Wang Y., Xie T., Zhang Y. Effect of pretreatment on the enzymatic hydrolysis of kitchen waste for xanthan production // Bioresour. Technol. 2017. V. 223. P. 84–90. doi: 10.1016/j.biortech.2016.10.035
52. Liu W., Dong Z., Sun D., Chen Y., Wang S., Zhu J., Liu C. Bioconversion of kitchen wastes into bioflocculant and its pilot-scale application in treating iron mineral processing wastewater // Bioresour. Technol. 2019. V. 288. Article No. 121505. doi: 10.1016/j.biortech.2019.121505
53. Zhao K., Xu R., Zhang Y., Tang H., Zhou C., Cao A., Zhao G., Guo H. Development of a novel compound microbial agent for degradation of kitchen waste // Braz. J. Microbiol. 2017. V. 48. No. 3. P. 442–450. doi: 10.1016/j.bjm.2016.12.011
54. Nita C., Zhang B., Dentzer J., Matei Ghimbeu C. Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries // J. Energy Chem. 2021. V. 58. P. 207–218. doi: 10.1016/j.jechem.2020.08.065
55. Chen H., Shen H., Su H., Chen H., Tan F., Lin J. High-efficiency bioconversion of kitchen garbage to biobutanol using an enzymatic cocktail procedure // Bioresour. Technol. 2017. V. 245. Pt. A. P. 1110–1121. doi: 10.1016/j.biortech.2017.09.056
56. Chen J., Ma X., Yu Z., Deng T., Chen X., Chen L., Dai M. A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS // Bioresour. Technol. 2019. V. 289. No. 1. Article No. 121585. doi: 10.1016/j.biortech.2019.121585
57. Kalabin O.V., Bruk T.M., Bykova I.V., Udovenko E.V. Influence of radioecological pollution on heart rate variability in young men of different somatotypes // Theoretical and Applied Ecology. 2022. No. 4. Р. 232–237.
doi: 10.25750/1995-4301-2022-4-232-239
58. Nishimura H., Tan L., Kira N., Tomiyama S., Yamada K., Sun Z.Y., Tang Y.Q., Morimura S., Kida K. Production of ethanol from a mixture of waste paper and kitchen waste via a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation // Waste Manag. 2017. V. 67. P. 86–94. doi: 10.1016/j.wasman.2017.04.030
59. Dai Y., Sun Q., Wang W., Lu L., Liu M., Li J., Yang S., Sun Y., Zhang K., Xu J., Zheng W., Hu Z., Yang Y., Gao Y., Chen Y., Zhang X., Gao F., Zhang Y. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review // Chemosphere. 2018. V. 211. P. 235–253. doi: 10.1016/j.chemosphere.2018.06.179
60. Chan Y.H., Loh S.K., Fui Chin B.L., Yiin C.L., How B.S., Cheah K.W., Wong M.K., Minh Loy A.C., Gwee Y.L., Yuen Lo S.L., Yusup S., Lam S.S. Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects // Chem. Eng. J. 2020. V. 397. Article No. 125406. doi: 10.1016/j.cej.2020.125406
61. Heredia-Guerrero J.A., Heredia A., Domínguez E., Cingolani R., Bayer I.S., Athanassiou A., Benítez J.J. Cutin from agro-waste as a raw material for the production of bioplastics // J. Exp. Bot. 2017. V. 68. No. 19. P. 5401–5410. doi: 10.1093/jxb/erx272
62. Banerjee S., Arora A. Sustainable bioprocess technologies for urban waste valorization // Case Stud. Chem. Environ. Eng. 2021. V. 4. Article No. 100166. doi: 10.1016/j.cscee.2021.100166
63. Cheng H., Hu Y. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China // Bioresour. Technol. 2010. V. 101. No. 11. P. 3816–3824. doi: 10.1016/j.biortech.2010.01.040
64. Madurwar M.V., Ralegaonkar R.V., Mandavgane S.A. Application of agro-waste for sustainable construction materials: A review // Constr. Build. Mater. 2012. V. 38. No. 1. P. 872–878. doi: 10.1016/j.conbuildmat.2012.09.011
65. Dutta S., He M., Xiong X., Tsang D.C. Sustainable management and recycling of food waste anaerobic digestate: A review // Bioresour. Technol. 2021. V. 341. Article No. 125915. doi: 10.1016/j.biortech.2021.125915
66. Haldar D., Shabbirahmed A.M., Singhania R.R., Chen C.W., Dong C.D. Ponnusamy V.K., Patel A.K. Understanding the management of household food waste and its engineering for sustainable valorization – A state-ofthe-art review // Bioresour. Technol. 2022. V. 358. Article No. 127390. doi: 10.1016/j.biortech.2022.127390
67. Bogar B., Szakacs G., Linden J.C., Pandey A., Tengerdy R.P. Optimization of phytase production by solid substrate fermentation // J. Ind. Microbiol. Biotechnol. 2003. V. 30. No. 3. P. 183–189. doi: 10.1007/s10295-003-0027-3
68. Bogar B., Szakacs G., Pandey A., Abdulhameed S., Linden J.C., Tengerdy R.P. Production of phytase by Mucor racemosus in solid-state fermentation // Biotechnol. Prog. 2003. V. 19. No. 2. P. 312–319. doi: 10.1021/bp020126v
69. Selvakumar P., Ashakumary L., Pandey A. Biosynthesis of glucoamylase from Aspergillus niger by solidstate fermentation using tea waste as the basis of a solid substrate // Bioresour. Technol. 1998. V. 65. P. 83–85. doi: 10.1016/s0960-8524(98)00012-1
70. Sadh P.K., Duhan S., Duhan J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review // Bioresour. Bioprocess. 2018. V. 5. Article No. 1.
doi: 10.1186/s40643-017-0187-z
71. Philippoussis A.N. Production of mushrooms using agro-industrial residues as substrates // Biotechnology for agro-industrial residues utilization / Eds. P. Singh Nee’ Nigam, A. Pandey. Dordrecht: Springer, 2009. P. 163–196. doi: 10.1007/978-1-4020-9942-7_9
72. Hussein M.H., El-Hady M.F., Shehata H.A., Hegazy M.A., Hefni H.H. Preparation of some eco-friendly corrosion inhibitors having antibacterial activity from sea food waste // J. Surfactants and Deterg. 2013. V. 16. No. 2. P. 233–242. doi: 10.1007/s11743-012-1395-3
73. Papanikolaou S., Dimou A., Fakas S., Diamantopoulou P., Philippoussis A., Galiotou-Panayotou M., Aggelis G. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains // J. Appl. Microbiol. 2011. V. 110. No. 5. P. 1138–1150. doi: 10.1111/j.1365-2672.2011.04961.x
74. Baykova O.V., Pugach V.N., Kazakov A.V. The entrepreneurial method as a way to solve the problems of processing wood waste in a circular economy // Theoretical and Applied Ecology. 2022. No. 4. P. 224–231. doi: 10.25750/1995-4301-2022-4-224-231
75. Heater B.S., Chan W.S., Lee M.M., Chan M.K. Directed evolution of a genetically encoded immobilized lipase for the efficient production of biodiesel from waste cooking oil // Biotechnol. Biofuels. 2019. V. 12. No. 1. Article No. 165. doi: 10.1186/s13068-019-1509-5
76. Girotto F., Alibardi L., Cossu R. Food waste generation and industrial uses: A review // Waste Manag. 2015. V. 45. P. 32–41. doi: 10.1016/j.wasman.2015.06.008
77. Park J., Lee B., Tian D., Jun H. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell // Bioresour. Technol. 2018. V. 247. P. 226–233. doi: 10.1016/j.biortech.2017.09.021
Прикреплённые файлы:
<< Содержание номера << Архив
Дата последнего обновления: 11:24:48/27.03.25
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
 |
ИАА "Информ-Экология" |
|
 |
|
|
|
|
|
| |
|
|
|
|
|
 |
Министерство природных ресурсов Российской Федерации |
|
 |
|
|
|
|
|
| |
|
|
|
|
|
 |
Счётчик |
|
 |
|
|
|
|
|
| |
|